
C Compiler
Validation:
Choosing a
Validation

Suite
First Edition

 by

Mrs Olwen Morgan CITP, MBCS

and

Eur Ing Chris Hills BSc , C. Eng.,

MIET, MBCS, FRGS, FRSA

The Art in Embedded Systems
comes through Engineering discipline.

Compiiler
Validation 5

Compiler
Validation 5

2library.phaedsys.com

Contents
Introduction 3

Types of Test Suite for C 3

Hosted vs Freestanding Implementations 4

One Test Per Program and Many Tests Per Program 4

Plum Hall CVS 5

Perennial CVSA 5

Solid Sands SuperTest 6

Csmith and Obfuscated C 6

GNU Test Suites 6

Other test suites 7

Proven in Use 7

Test suites, benchmarks and compiler developers 7

Choosing a Test Suite 9

Using a Compiler Validation Service 10

Compiler
Validation 5

3 library.phaedsys.com

C Compiler
Validation:

 Choosing a
Validation

Suite

Tools for Validating Compilers for
Use in Safety-Critical Projects
Compiler validation requires specialist tools. These

notes are deigned to help you choose the most

appropriate tools for your project and aid you in

deciding whether to carry out the validation in-house

or by using a third party service..

1. Introduction
As assessors such as the TÜVs and others are

beginning to require C compiler validation for critical

projects, with some requiring on-target validation,

choosing a validation suite is becoming an issue. This

paper reviews the main candidates, examining their

advantages and disadvantages.

2. Types of Test Suite for C
A C Compiler Validation Suite (CVS) is a set of test

programs specifically designed to test a compiler against

the requirements of a relevant C language standard. Since

1990, successive versions of ISO/IEC 9899 Information

technology - - Programming languages - - C (from now on

called ISO C) have been the C standard, with National

Bodies such as BSI, ANSI, DIN etc issuing their own ISO-

licensed local editions.

In the 1980’s there was no C standard. The K&R

books were often regarded as one, but were intended as

tutorials. There was, of course, compiler documentation,

but compiler vendors added their own extensions and

interpretations to C. In the cross compiler market for

embedded systems, the MCU architectures sometimes

required restrictions and interesting adaptations that

gave rise to many of the undefined, unspecified and

implementation-defined parts of C. In 1989 the American

National Standards Institute (ANSI) produced a standard

for C (C89), which was ratified the following year by the

International Standards Organisation (ISO) (C90), which

continues to maintain the standard, having issued new

versions in 1999 and 2011.

Currently (2017) only three validation suites in use

were specifically designed for the purpose of validating

C compilers against the C standard. They are the

suites developed by Plum Hall, Perennial and Solid

Sands (formerly the ACE suite). All three were initially

developed in the mid 1980’s as the C89/C90 was under

development. Members of all three CVS teams were

members of the ISO and ANSI working group developing

the C standard.

Compiler
Validation 5

4library.phaedsys.com

The well-known GNU test suite, though containing

many useful test programs, is not itself primarily

designed to be a validation suite that tests compilers

against C language standards. The equally well-known

Csmith test system is a tool that pseudo-randomly

generates “stress test” programs. We will look at all these

two in more detail later.

In addition to the three CVSs there are many other

smaller test suites and benchmarks that exercise specific

things such as maths and other particular patterns

of computation.. Benchmarks normally measure

performance, often a very specific and narrow aspect of

performance and are not used for compiler validation

but will be used by compiler developers to assess

performance. Marketing departments like benchmarks

but unless your application makes extensive use of the

particular thing that a benchmark tests, they are not

particularly relevant. We cover benchmarks more fully

in a separate document.

3. Hosted vs. Freestanding
 Implementations

The ISO C language standards distinguish between

“hosted” and “freestanding” implementations. What

constitutes “hosted” and what “freestanding” is

somewhat blurred as we move from bare metal to simple

and complex schedulers through micro-kernel systems

and RTOS on to full blown, non real time, OS like OSX,

UNIX, Windows and Linux. We know what the two ends

are but where, precisely, the line should be drawn in the

middle, has been, and still is, hotly debated.

The ISO C standard says a hosted implementation

must provide all of the standard libraries defined in the

standard. A freestanding application need provide only

<float.h>, <iso646.h>, <limits.h>, <stdarg.h>, <stdbool.h>,

<stddef.h>, and <stdint.h> and need not provide support

for complex numbers. The notion of a freestanding

implementation was originally put forward to allow

for cross-compilers for embedded targets, which in the

1980s were often restricted-architecture 8 bit MCUs.

These did not require many of the standard library

facilities which would not fit into their functionality.

Many did not implement floating point at all. It was not

uncommon to have an “integer compiler” where floating

point was either not available or was implemented in a

separate more expensive “floating point compiler” as

many embedded systems used integers or fixed point

arithmetic. (https://en.wikipedia.org/wiki/Fixed-point_

arithmetic)

Note: In the 1980’s the desktop PC was a 16 bit system

with an optional and separate maths co-processor.

In practice, as embedded world targets have moved

from 8 bit to 16 and 32 bit targets, many cross compiler

implementers now provide some, most or all of the

other standard libraries that are required in hosted

implementations – in particular many implementations

provide a cut-down version of the <stdio.h> and other

libraries, albeit often in forms with reduced functionality.

One test suite (Perennial) comes in two versions, one

for hosted and one for freestanding implementations.

The freestanding version covers the language and

only those libraries that the ISO C standard requires in

freestanding implementations. For those critical systems

that deliberately minimise reliance on library functions,

that is all that may be required and they can use the

freestanding version of the Perennial test suite. Where

any embedded system does use cut-down versions of

other standard libraries, testing using a subset of the tests

for a hosted implementation may be more appropriate.

This is why you need to check exactly what your

compiler does and does not do, where it does and does

not adhere to the ISO C standard, and come to that,

which version of the ISO standard. There is more on this

in our paper “Repeatability and Reproducibility: Why

testers sweat the details.”

4. One Test Per Program and Many
 Tests Per Program

When running compiler tests, one must ensure that

a failed test does not put the environment into a state

in which subsequent tests could fail spuriously and

produce false negative results (or false positive results.)

A simple way to do this is to write the test suite so that

it contains exactly One Test Per Program (OTPP). At the

end of each test the system is returned to a known state.

 OTPP is also valuable for on-target testing when

memory limitations mean that large Many Tests Per

Program (MTPP) modules cannot fit in the memory –

instead testing is carried out by a large number of OTPP

files.

But OTPP can also be inconvenient for on-target

testing – the total time to run the suite is dominated by

Compiler
Validation 5

5 library.phaedsys.com

ground in the market when the Perennial test suite was

approved for use in testing compilers for US government

projects.

6. Perennial CVSA
The Perennial C Validation Suite(s) (CVSA), first

produced in 1986 are of OTPP design and come in two

versions, for hosted and freestanding implementations

respectively. For projects using compilers that use

standard libraries other than those mandated for

freestanding implementations, it is best to use a subset

of the tests for hosted environments provided in the

full-hosted implementation test suite. Depending on

the libraries tested and on the target microcontroller,

running such tests on-target can take several days which

can be a significant disadvantage for some projects.

Currently CVSA provides tests for behaviour covered

in all versions of ISO C:9899 from 1990, K&R C, and

Technical Reports:

18037 - Extensions to the C Language, support for

embedded processors.

19769 - Extensions to the C Language, support for

additional character types.

24731 - Extensions to the C Language, Specification

for Secure C Library Functions.

24732 - Extensions to the C Language to support

Decimal Floating Point Arithmetic.

There are over 69,000 tests in the full suite for hosted

implementations. The freestanding test suite has far

fewer tests and exercises only those aspects of behaviour

required in a freestanding application.

The Perennial test suite is more systematically

designed than the Plum Hall suite but has features that

some specialists have seen as flaws. The main example

of this is that each test program contains code that

presents an API to external test control program in order

to facilitate management of test runs. Such modifications

to the code are not actually necessary since it is not hard

to control test runs by using the facilities of external test

driver programs and the test host’s operating system.

Ideally a test should contain only those language

constructs that suffice to test a single language feature.

Given that a test driver API is not technically needed,

it is hard to see why Perennial’s suite uses one, since it

requires yet more configuration parameters to get right

and provides greater scope for unintended functioning

the time taken to download the programs to the target

and, after running and reporting results, clearing down

the target for the next test. Another major problem, given

the large number of tests, is the number of write/rewrite

cycles the flash memory can handle. On-target compiler

tests have failed because the flash memory on the target

board has died. Flash memory erase/write cycles have

improved a lot but even now (2017) compiler validation

tests can still cause flash memory to fail by exceeding

their write/rewrite limits.

In practice some CVSs, for example, Solid Sands,

have MTPP with tests running to millions in total but

constructed in a way that makes the suite usable for on-

target testing. The Solid Sands CVS provides means to

isolate failed tests to ensure that they do not affect the

running of subsequent tests.

MTPP is not ideal but for strenuous testing on

development kits, it is currently one of only two practical

ways to run very large numbers of tests in an acceptable

period. An alternative is to test simultaneously on

several target development boards, but this is only

reliable when all the development boards are identical

and using the same silicon revision for the MCU and

other parts.

When a test suite is designed to be MTPP, the suite

developer should ideally provide means to select library

test programs on a case-by case basis, according to

what libraries the compiler under test (CUT) provides

in the embedded environment. Therefore an ideal

CVS is somewhere between an OTPP and MTPP with

the ability to recover from individual test failures and

continue testing.

5. Plum Hall CVS
Plum Hall, in 1986, produced a commercial C

Validation Suite(CVS). It contains both conformance

tests and deviance tests and has been widely used over

the last 30 years. It has over 56,000 lines of code and

thousands of tests. The test suite is intended primarily

for testing hosted C implementations and is of MTPP

design. This has led some C cross compiler developers to

use it in modified and/or reduced forms to make it more

convenient for testing freestanding implementations.

The Plum Hall suite continues to be used by compiler

developers but has been comparatively little used by

embedded systems developers, having apparently lost

Compiler
Validation 5

6library.phaedsys.com

of test programs. Aside from those reservations,

however, the Perennial test suite was the first C test suite

to be designed for certification-quality validation and

provides a good exercise of any C compiler.

7. Solid Sands SuperTest
The Solid Sands SuperTest suite started life as the

ACE (Associated Computer Experts bv, Netherlands

founded in 1975) test suite in 1984 some two years

before Perennial and Plum Hall but on the European

side of the Atlantic. The test suite became Solid Sands

SuperTest CVS in 2014 and contains more tests than the

Perennial and Plum Hall test suites combined (around

800,000 test programs). The suite is of MTPP design but

is suitable for on-target testing. Progressive tests probe

the functionality of:

• input file character mappings

• pre-processing

• lexical, syntactic and semantic analysis

• optimisation, code generation

• linking

• execution

There are tests for C language operations for different

operand types over their permitted ranges of values.

Tests are also included for behaviour that the C standard

states to be “implementation-defined”. The so-called

“depth tests” do extensive boundary-value based testing

for different operators, operands, operand types, storage

classes and operand value. There is also a regression-

oriented group of tests that test for the presence of bugs

that have been noted in widely used implementations.

Where relevant there are both conformance and deviance

tests.

Subsets of the suite can be selected specifically to

exercise the requirements of all versions of ISO C from

1990, and even K&R C, also

• IEC 60559:1989 (Floating Point Arithmetic)

• Relevant aspects of C++ as defined in ISO 14882

• C as used for digital signal processing

• C as used on embedded targets

Over the 800,000+ test programs, there are around

three million individual tests, making SuperTest the

largest C validation suite currently available.

With such a large number of tests, MTPP design is the

only practical option for design of the suite to make on-

target validation feasible but this still takes some time to

run and varies depending on the chosen target and the

technical characteristics of the debugger protocols used.

8. Csmith and Obfuscated C
While we have noted that Csmith and the GNU

test suites are not purpose-designed standards-based

validation suites, they do still have a useful role in

compiler testing of which embedded software developers

should be aware.

Csmith, as noted in our paper On-Target Stress Testing

of C Cross-Compilers, is a pseudo-random program

generator or stress tester, that produces a large number of

pseudo-randomly generated test cases. The C language

is very flexible and legal constructs can be formed in a

vast number of combinations. As it is unrealistic to test

every possible combination of constructs, an alternative

is a random selection of programs that a developer is

would be unlikely to write generated by the stress tester.

Csmith is particularly useful for use in conjunction

with fixed test suites that do not attempt many tests to

specifically stress compiler code generators. The authors

recommend running Csmith in addition to a good CVS.

Csmith alone will not validate the compiler.

The Solid Sands test suite has a larger number of

tests including those designed to test the back end

code generators. Therefore Csmith stress testing in

conjunction with SuperTest is a very strong combination.

An additional source of stress testing to be used

in addition to and not in place of Csmith is the code

submitted to the International Obfuscated C Code

Contest. Most compiler developers will run the winning

code for each year against their compilers, but this will

depend on the version of C the winning obfuscated C

code is written for and the version the CUT conforms to.

However that is one small set of tests - a stress tester can

produce many more both quickly and efficiently.

Csmith can, rather counter-intuitively, save sets of the

pseudo-random tests for running again as a regression

test set. This is useful for compiler developers where a

problem is found with the compiler and the corrections

to the compiler need to be tested.

9. GNU Test Suites
The GNU C test suites were originally developed for

Compiler
Validation 5

7 library.phaedsys.com

Compiler
Validation 5

7

specialised purposes in testing various elements of the

GNU Compiler Collection. These tests are useful for C

compiler developers, and several use them but they are

not particularly useful for users or developers seeking

a C validation test, particularly when testing on-target.

The tools are not structured as a test suite. As they are

not grouped to follow the ISO C structure, they make it

difficult to characterise test coverage, nor show what it

does, and do not carry out a structured test approach.

Validators using the GNU test suites will still need a full

CVS and the Csmith stress tester.

10. Other test suites
There are other test suites available though none as

comprehensive or widely used as the three previously

discussed, and they should only be used in addition to one

of the formal CVS’s and Csmith. These suites often were

created to test a specific aspect on a particular project. For

example the Paranoia Test suite (http://www.leshatton.

org/index_BE.html) was built to test system arithmetic

and Nullstone (http://www.nullstone.com/htmls/brief.

htm) for testing specific areas of compiler optimisation.

Since anyone, from highly respected software engineers

and scientists to undergraduate students, can write some

software and call it a “test suite”, it doesn’t mean they

are of equal quality or indeed that they even do what

they say they do. One test suite proudly proclaims over

6,500 tests. As noted, others are an order of magnitude,

or more, greater.

You do need some sort of provenance for a test suite.

The authors of the three CVS we have looked at were

on the ANSI/ISO C working group and helped shape

the language. They wrote the test suites to prove the

language they were also standardising. Some of the other

test suites do have good provenance but are generally

much smaller, for example Paranoia mentioned above. It

is not to say that these other test suites are not useful:

often they are but just not in isolation.

11. Proven in Use.
While a formal compiler validation is now

technically preferablel, some still refer to “proven in use”

justifications for compilers. However, “proven in use” is

in reality not really worth anything, as all the compilers

that could legitimately claim “proven in use” are also

those that are rigorously tested with formal test suites,

stress testers and other tools. For example compilers

from IAR, ARM Keil and Green Hills who formally test

their compilers with formal CVS have many thousands

of customers using the same tested binary. Many are using

these identical compilers on critical projects where

they are again formally validated on the project. While

these compilers have enough users of the same binary to

claim: “proven in use” they have already been formally

validated by the compiler developers.

On the other hand, while GCC is used by thousands

of users it is wrong to call it “proven in use” since, with its

diverse back ends, GCC is many different compilers built

from different components by many different people. In

theory 10,000 users could have 10,000 different compilers,

unlike the commercial companies, where a single binary

is validated and distributed to 10,000 users. While it is

possible to validate a GCC compiler, the validation will

only apply to identical copies, not any other builds.

Thus arises the paradox that “proven in use” is

not a useful metric: As far as the authors know, all the

compilers that can legitimately claim ”proven in use” are

also formally validated anyway.

12. Test suites, benchmarks and
 compiler developers

Of course you can never have enough compiler

tests. Commercial compiler developers tend to use one,

or sometimes two, of the three test suites mentioned

above and Csmith and often the obfuscated C code and

additional in house test suites and benchmarks. (See

our paper on Compiler Benchmarks.) As previously

discussed while benchmarks are not a sign of correctness

nor overall performance, they do test the efficiency of

specific operations, notably floating point operations.

These programs (or similar sets) are run in a formal way

with all results logged.

The in house test suites tend to be large bodies

of source code that previously compiled correctly, or

with known problems. These are of value for cross-

compilers for embedded targets, where they test

compiler or architecture-specific extensions to ISO–C,

or the “unspecified, undefined and implementation-

specific” parts of ISO C. In addition there are normally

regression test suites to confirm previous problems have

Compiler
Validation 5

8library phaedsys com

by a well-known commercial compiler company. Most

other commercial compiler developers have a similar

set of test programs They, between them, test most areas

of common compiler usage and some specific areas of

not recurred. There are also test suites for arithmetic and

maths functions (some test suites like Solid Sands also

include these) and other in house test sets.

The table shows the additional test software used,

Name Function

blowfish Blowfish algorithm

bt_stack Embedded protocol stack

car_navig Customer application

decrypt Functions to descramble encrypted multimedia content

dyn_array Dynamic array allocation

embos_test Real time operating system

float Part of customer application, battery charger. Floating point calculations
for capacity, diffusion, service hours etc

floattest Synthesized test of float and integer arithmetic’s

generator_controller Customer application; marine generator controller

gsm_efr GSM Enhanced Full Rate (EFR) coder/decoder

mars encryption algorithm

math Misc. math routines

microwave_sensor Customer application; microwave sensor for measurement of moisture in bins

mix DVI ADPCM coder/decoder and Patricia trie (from retrieval) implementation

modeit Internet application with TCP/IP stack

reed_solomon_
decoder Reed-Solomon decoder

regexp Regular expression scanner. Uses search string with
special characters to match patterns of text

rijndael encryption algorithm

serpent encryption algorithm

sha secure hash algorithm

s*****meter
Customer application, S*****meter. Device that determines how well
the lungs receive, hold, and utilize air, to monitor a lung disease

susan
Image processing to detect the position of edges/
corners for the guidance of unmanned vehicles

temp_display Customer application; temperature logger

Compiler
Validation 5

9 library.phaedsys.com

interest to particular industries.

There are a lot of cryptographic tests because these

are usually using maths and/or bit manipulations as

well as file accesses (input stream and output stream).

There are usually formal, often certified, test tools for the

cryptographic programs to ensure they not only compile

correctly but perform correctly. Since for cryptographic

routines speed is also important, performance

benchmarks are also run.

A compiler is an extremely complex system and

changing one thing in one place and testing just the

one thing is not enough. This is because a slight change

in one place may have a ripple like effect elsewhere;

perhaps causing very subtle changes in behaviour that

will change the behaviour of the compiler in some

circumstances. The full suites of tests must be run again

after every change.

To make test times acceptable, testers usually run test

suites as on-host tests using target simulator software in

conjunction with a debugging protocol.

Normally compiler developers have a permanent

compiler test and validation suite(s) set up on dedicated

test computer(s) with staff whose full time job is running

the tests.

NOTE: for formal compiler validation you do need a

dedicated, configuration-controlled test computer.

13. Choosing a Test Suite
An important principle for designing critical software

is: whatever is not there cannot go wrong. Nothing that

is not required for critical software to fulfil its intended

function should be included. A second principle is:

whatever is there should be made as simple as possible

(but no simpler). These principles may be applied to test

suites themselves.

The authors believe that the Plum Hall suite has

been overtaken in coverage by both the Perennial and

Solid Sands suites. In practice, and for critical systems

development, the choice is between Perennial and Solid

Sands.

Perennial’s use of an API for external test drivers

breaches the first principle for critical software and has

been seen by some as clumsy. On the other hand the

parts of the test programs that are actually required for

testing of language usage were very carefully designed

and the suite has proved reliable in use, even if it does

do something that is technically unnecessary. A

further less-than-desirable feature of the Perennial

suite is that it requires a hosted C compiler on the

test host to self-check that it has been set up correctly.

On Windows platforms it is, on balance, best to use

Microsoft’s Visual Studio compiler for this purpose.

The free version will do but it unfortunately relies

very heavily on Windows environment variables and

is easily misconfigured, even by experts. In practice

this also makes a Windows environment editor a

necessary auxiliary tool. Although the free EVeditor

is perfectly adequate, we see yet another example of

unnecessary complexity, this time indirectly due to

Microsoft.

Solid Sands SuperTest also does some things

that are not strictly necessary. It requires a POSIX-

compliant system API because, among other reasons,

it uses UNIX tools within its test driver software.

For this purpose the suite uses CygWin when run

on Windows platforms. This has to be downloaded

separately from the test suite and makes configuration

fiddlier on a Windows test host as well as introducing

reliance on a CygWin download site for CygWin

version information. A compensating advantage,

however, is that several modern C cross-compilers are

based on GCC and themselves need either CygWin

or MinGW to be used under Windows. For these

compilers, use of CygWin is a distinct advantage. It

would, however, be a little cleaner if SuperTest did not

rely on CygWin for test driver implementation.

Both Solid Sands and Perennial test suites

come with separate scripts or programs that, in

conjunction with the suites themselves, provide a

workable compiler validation kit. In both cases too,

these separate items could be simplified and, better

still, be accompanied by an automated configuration

tool. Lack of automated configuration remains a

technical weakness of all C test suites at the time of

writing (2017). These niggles cry out for Tcl-based test

drivers, which would have the merit of being readily

portable among test host environments, native UNIX,

Windows, or CygWin/MinGW. Unfortunately,

neither Perennial nor Solid Sands have chosen to use

fully cross-platform drivers.

As regards test coverage, SolidSands SuperTest

contains tests that go over and above the basic

Compiler
Validation 5

10library.phaedsys.com

conformance and deviance tests offered by Perennial.

Testing of arithmetic operations is based on boundary-

value coverage. There are also tests that attempt to stress

the compiler’s code generator, notably in exercising

register allocation. Although these have limitations, they

are useful as a means of bridging, at least partially, the

gap between conformance/deviance tests and pseudo-

randomly generated stress tests. Typically a fixed test

suite is weak at testing compiler back end functions

whereas pseudo-random stress test tools such as Csmith

are quite good at it.

A simple guideline in selecting between Perennial

and Solid Sands is to consider the criticality of the project

for which validation is needed and the use the project

makes of C‘s standard libraries. For critical projects

using only the minimal libraries required in a free

standing implementation, Perennial CVS augmented by

the free Csmith stress tester will probably give a good

fit to technical requirements. Otherwise, if more than

the minimum library is used, Solid Sands SuperTest is

probably the better option and can be used in conjunction

with Csmith if there is a particular need for stress testing

of the code generator.

14. Using a Compiler Validation Service
There is a lot more to compiler validation than

buying the test suite, loading it and pressing the “go”

button. While for on-host testing, this will usually give

a reasonable measure of confidence, for on-target testing

or for submission to an external body for a SIL validation

it is almost certainly technically inadequate. See our

papers:

C Compiler Validation for Embedded Targets

Repeatability and Reproducibility in C Compiler Testing:

Why testers sweat the details

Stress Testing Compilers

Code Generator Validation

What is a compiler?

Compiler Benchmarks

In particular read Repeatability and Reproducibility in

C Compiler Testing (subtitle Why testers sweat the details)

which explains why you will need a computer solely

dedicated to running the test suite with no network/Wi-

Fi connections or updates to the OS. Compiler testing, as

we stress, has to be both repeatable and reproducible and

great care must be taken over seemingly small technical

details to achieve this.

In addition to the testing environment the test suite

will need very careful configuration as will Csmith and

any other additional test sets required. The outputs will

need careful recording and documenting. Of course you

need to document the test environment and the process

to the degree required by the process standard and SIL

level for the organisation validating the project. Reliably

reproducible compiler validation is not something most

software developers can do without significant training.

Many things can go wrong with compiler validation

and only those with specialist training and experience

in the field really know how to avoid the pitfalls. It

takes only a single tiny error to invalidate a full run of a

validation suite on a chosen compiler.

Given the cost of a CVS, the time taken to set up the

environment and run the tests it is far more cost effective

to have an expert do it for you.

Compiler
Validation 5

11 library phaedsys com

The Art in Embedded Systems
comes through Engineering discipline.

Compiler
Validation 5

C Compiler Validation: Choosing a
Validation Suite

First edition September 2017

© Copyright Chris A Hills & Olwen Morgan 2017

The right of Chris A Hills & Olwen Morgan to be

identified as the authors of this work has been asserted

by them in accordance with the Copyright, Designs and

Patents Act 1988

Phaedrus Systems Library
The Phaedrus SystemsLibrary is a collection of useful

technical documents on development. This includes

project management, integrating tools like QA·C to IDE’s,

the use of debuggers, coding tricks and tips. The Library

also includes the QuEST series.

Copies of this paper (and subsequent versions) with

the associated files, will be available with other members

of the Library, at:

http://library.phaedsys.com

