
On-Target
Stress Testing

of C Cross
Compilers

First Edition

 by

Mrs Olwen Morgan CITP, MBCS

and

Eur Ing Chris Hills BSc , C. Eng.,

MIET, MBCS, FRGS, FRSA

The Art in Embedded Systems
comes through Engineering discipline.

Compiiler
Validation 4

Compiler
Validation 4

2library.phaedsys.com

Contents

Introduction 3

What is a compiler stress tester? 3

Stress testing vs validation suites 4

How a stress test generator works 5

Program pruning 7

Using a stress testing tool 7

When do you need stress testing? 7
Code generated from modelling tools 7
Unusual combinations of compile-time switches 8
Compiler optimisations 9
Compilers not tested on-target 9

Combined testing 10

Conclusion 10

References 11

Compiler
Validation 4

3 library.phaedsys.com

On-Target
Stress Testing

of C Cross
Compilers1

Compiler Stress Testing for Safety-
Critical Projects
Stress testing of compilers, alongside
traditional test suite compiler testing,
can form a valuable element of a safety
case for critical projects at IEC 61508
SIL3/4 or equivalent integrity levels.

1 Introduction
Many software engineers will have some idea of

what compiler test suites are but fewer will be familiar

with the use of compiler stress test tools. The purpose of

this paper is to describe how such tools work, what they

test, what they do not test, and how to assess whether

stress testing is actually needed for your project.

2 What is a compiler stress tester?
In general usage the term “stress testing” means

exercising a system under test beyond the conditions

expected in normal operation. Its purpose is to assess how

robust the system is under abnormal loads or operating

conditions. Compiler stress testing is essentially the

same but stresses the compiler by making it compile

correct but syntactically convoluted code, i.e. code that a

human programmer would be unlikely to write outside

the Obfuscated C Competition (see http://www.ioccc.

org). In fact since 1984 the International Obfuscated C

Code Contest has often been used as an informal source

of stress testing programs for compilers.

Formal compiler stress testing programs are, however,

commonly pseudo-randomly generated by a stress test

generator tool rather than a human mind.

A major landmark in stress testing was the

development of Wichmann’s stress test generator for Ada

[WiDa, 1989]. Wichmann and Davies described various

concepts of stress testing that have been adopted by

subsequent tools. Stress testing is not just a completely

random unstructured collection of programs that

“some one thought would make a good test”. (Though many

compiler companies will use some of the Obfuscated

C Competition programs and other assorted programs

in addition to a formal Compiler Validation Suite,

Regression Test Suite and Stress Testing.)

The main formal stress tester for C used today is the

Csmith stress test generator, developed at the University

of Utah by John Regehr and his team, which applies

the Wichmann-Davies principles to the testing of C

compilers [XYER, 2011]. Csmith is widely used and is

Compiler
Validation 4

4library phaedsys com

freely downloadable from the University of Utah web

site https://embed.cs.utah.edu/csmith.

However there is a lot more to testing a compiler than

downloading the stress test suite and running it. As

Deep Thought once said: “42 is the answer but you never

really understood the question…” In fact the Csmith web

site contains the following warnings:

We strongly request that you:

• Acquire a sophisticated understanding of the C

standard before reporting any bug -- this may take

months

• Read this entire document before reporting a compiler

bug

• Always check if an issue is known before reporting it

• Understand and conform to whatever additional local

bug-reporting conventions apply to the compiler you

are testing

• Listen to feedback from compiler developers and other

members of the community

Failure to heed these instructions will cause you to:

• Waste developers’ time

• Probably be publicly flamed

• Definitely be ignored in the future

This is quite apart from wasting your own time.

When they say “A sophisticated understanding of the C

standard” this means you need an official copy of the ISO

C Standard (not one of the many drafts wandering the

internet which may be “almost complete”) and have not

just read it but fully understood it, and in particular ISO

9899:1990 Annex J, for obvious reasons. Reading K&R’s

C book and having a few years developing experience

doesn’t cut it. Compiler testing is not the same as

application testing.

3 Stress testing vs. validation suites
Pseudo-random stress testing differs in several

ways from testing using a Compiler Validation Suite
(CVS). A CVS is a fixed set of programs designed
primarily to demonstrate that the compiler
complies with the relevant language standard. Most
programs in such suites are conforming programs.
Deviance tests may be included to see whether the
compiler exhibits certain common types of fault but
such tests are never conforming programs. Each is
preceded by a pre-test to check that a program the
same as the conforming program except for a single

nonconforming construct does actually compile
and run successfully. A CVS may also include
tests of implementation-defined, unspecified and
undefined aspects of the implementation. It is a
characteristic of fixed validation suites that they
exercise the front end of a compiler more strenuously
than the back end.

Generally the front end of a compiler is the
language parser - that is the Lexical Analyser,
Syntax Analyser, and Semantic Analyser.

Generally the Back End is the Intermediate Code
Generator, Machine Independent Code Improver,
Target Code Generator and Machine Dependant
Optimiser. Some optimisations, or ranges of
optimisations can be pre-selected by compiler
flags. Other optimisations or ways of converting
certain constructs are often possible. They can often
depend on the target architecture and the methods
or algorithms used by the compiler. A mismatch
between the front and back ends of a compiler
can cause problems and both need to be tested.
This is why as of 2015/6 the authors are seeing
more requests for compiler validation on the target
processor.

Pseudo-random stress testing does not rely
on fixed sets of programs, though tests that have

Fig. 1

Compiler
Validation 4

5 library phaedsys com

100% collocation coverage was being undertaken.
Practically speaking, this is virtually impossible
owing to the vast number of possible combinations.

4 How a stress test generator works
To understand pseudo-random stress testing properly

you need to understand how pseudo-random stress tests

are generated. Consider the (highly simplified) program

in Fig. 2.

This seemingly simple function is a lot more complex

than it appears because FIXED and GENERATED are

defined as macros. The stress tester first randomly selects

an integer value for FIXED, say, 7. It then creates as the

expansion of GENERATED an expression that should

evaluate to 7. This expression is, however, generated by a

random traversal of the C syntax for expression and can

revealed errors may subsequently be preserved
and re-used for regression testing purposes.
What a stress test generator does is to generate a
correct program by pseudo-random traversal of the
language grammar. This creates test programs that
are quite unlike those that a human programmer
would, or should, normally write. They are also
quite different from those that would be created by
a modelling tool with an associated code generation
package, for example MATLAB/SIMULINK.

Experience has shown that such programs
exercise the back-end of a compiler more strenuously
than the front end. This is because they throw
up quite convoluted and unusual combinations
of operators that would not typically form part
of any logical test pattern unless some form of

#define FIXED <inserted by stress test generator>

#define GENERATED <inserted by stress test generator>

#include <limits.h>

#include <math.h>

#include <stdio.h>

int main(void)

{

 int f = FIXED;

 int g = GENERATED;

 printf(“EXPECTED RESULT = %i \n”, f);

 printf(“ACTUAL RESULT = %i \n”, g);

 if (f != g)

 {

 printf(“FAIL\n”);

 }

 else

 {

 printf(“PASS\n”)

 }

 return 0;

}

Fig. 2

Compiler
Validation 4

6library phaedsys com

be quite convoluted.

The brief example in Fig. 3 shows a simple possible

instance of pseudo-random expression generation.

Where numbers are randomly expanded, the tool

selects a relevant form of expression at random from

the C language syntax. Once the form of expression has

been selected, values are allocated to its sub-expressions

so as to preserve the value of the number for which the

expression is being generated. These steps are repeated

cyclically, at each stage ensuring that when the whole

randomly generated expression is evaluated, it will be

equal to the fixed value (here 7) originally selected at

7 → expression1 + expression2 // random form selected
expression1 → 11 // random value selected
expression2 → -4 // to sum to 7

11 → expression3 * expression4 // random form selected
expression3 → 2 // random value selected
expression4 → 5.5 // to give product 11

-4 → expression5 / expression6 // random form selected
expression5 → -16.0 // random value selected
expression6 → 4 // to give quotient 4

-16.0 → sqrt(expression7) // random form selected
expression7 → 256 // to give 16 as root

4 → expression8 << expression9 // random form selected
expression8 → 1 // random value selected
expression9 → 2 // to give 4 on shifting

Fig 3

Fig 4

7

(expression1 + expression2)

(expression8 << expression9)(sqrt (expression7))

(expression5 / expression6)(expression3 * expression4)

11 -4

-(16.0) 42 5.5

256 21

((2 * 5.5) + (- (sqrt (256)) / (1 << 2)))

Compiler
Validation 4

7 library phaedsys com

Compiler
Validation 4

7

random. Notice that the tool determines the values of

expression according to mathematical rules, and need not

insert explicit type conversion if a conforming compiler

should produce the correct result by implicit conversion.

The process can be depicted graphically in the form of a

parse tree as shown in Fig.4. The example shown here is

simplified to show the general idea. In practice, a stress

test generator will generate much larger and much more

varied forms of expression involving the entire range of

operators. It will also introduce variables as operands and

these may be in any kind of storage chosen at random.

In addition, randomly generated constructs are not

limited to expressions. Complex control structures can

also be generated which may exceed all recommended

limitations on control flow complexity. The result is

something that neither a human programmer nor a code

generator for a modelling tool is ever likely to write.

Since the test generation process is random and the

total number of possible combinations is immense it is

highly likely that forms of expression will be generated

that were never included in the compiler developer’s

original testing, particularly when, as with some

compilers, the front end parser and back-end come from

two different sources to form the compiler suite. Front

ends tend to be standard e.g. the EDG parser or the GCC

front end but are married to many different back ends.

A crucial part is how the intermediate code system is

devised and implemented.

Since the generated programs are always made

syntactically and semantically correct, they almost

invariably compile without error messages but quite

often they can include code generation errors. Sometimes

these errors have been long dormant in the compiler.

It is quite common for random stress test programs to

find previously undiscovered errors in very widely used

and generally reliable compilers, simply because that

combination of operators and expressions has never

been used before.

5 Program pruning
Where a generated program is run and outputs a FAIL

result, it will generally be a single localised construct

in the text that actually elicits the error. Consequently,

the test can be simplified by traversing the parse tree

of the randomly generated expression to find exactly

which sub-expression causes the error. The tool can then

generate a program containing only that sub-expression,

creating a small test that can be used for regression

testing purposes.

This pruning process has to be automated. Raw

random stress test programs are typically so convoluted

that they are hard for humans to read accurately, let

alone for them to examine to locate errors manually. Test

program pruning routines are an essential part of any

industrial-strength stress test generator.

6 Using a stress testing tool
The procedure for using a stress test generator

is straightforward. You generate a predetermined

number of test programs and run them. Those that do

not demonstrate compiler errors are put in one group.

Those that do find errors are then reduced to their

essentials by program pruning and re-run to show

that they still elicit the error. These errors need to be

investigated to ensure they really are errors and are not

due to architecture, compiler or MCU limitations. (See

the comments in section 2, above from the Csmith web

site on error reporting.) The pruned tests are then put

in another group for re-use in future tests of the same

compiler or tests of different compilers and form part

of the Regression Test Suite. Used in this way a stress-

testing tool typically finds bugs faster than a population

of users. Thus stress tests greatly strengthen compiler

regression testing.

7 When do you need stress testing?
Not all projects will need to undertake compiler stress

testing. It may, however, be required for safety related

projects at SIL3/4 or ASIL C/D as discussed below:

Code generated from modelling tools
Increasingly system-modelling tools can generate

code automatically for a verified model. Such code

generators should be used with extreme caution as

experience has shown that the quality of the generated

code is often poor. One particularly well-known model-

to-code tool at one time produced code that was littered

with violations of MISRA C coding rules, even the MISRA

Auto Code rules. These modelling tools build the source

by using templates and putting together blocks of code,

which can produce code that no human would construct

and probably not in a way that any tester would use

Compiler
Validation 4

8library phaedsys com

by functions and not inline code and an optimiser

might well eliminate the function-call (and indeed the

function) entirely. The problem here is that by generating

C code from the net that is a systematic translation of

code in a functional language, we might present the

optimiser with far more optimisation opportunities

than handwritten code might give it. This, in turn, risks

colliding with parts of the optimiser that are less often

exercised and might turn out to be buggy.

Whenever code is constructed by translation from a

system model, whether automatically or manually, it is

prudent to perform stress testing of the compiler in case

the code elicits dormant code generation errors in the

compiler.

Unusual combinations of compile-time
switches

Modern C compilers tend to have large numbers of

compile-time switches. Even old C compilers for some

MCU’s have many combinations of switches that have

only been tested in the “common” configurations even

after many years of use.

It is impossible for the compiler developer to test

under all possible switch combinations especially with

all possible combinations of C language constructs

and variations of target hardware. For the humble 8051

family there were around 1000 variants. For the ARM

Cortex M there is at least an order of magnitude more

variants and the number is growing daily. Thus whilst

some popular compilers like the Keil 8051 compiler can

claim “proven in use” with about 80% of the market;

the compiler might never have been used, never mind

to test the compiler. Whilst the blocks and templates

themselves may be sound, some combinations may not

be. There are no third-party test suites for modelling

tools in the same way there are for other translators like

compilers. And it is not uncommon for concerns over

code quality to cause safety authorities to frown upon

the use of such tools.

Manual translation from model-to-code does not

necessarily remove this problem. For example, it is

relatively straightforward to produce good C code by

manual translation of a system model given in, say,

Coloured Petri Nets [JeKr, 2009]. On the other hand this

will involve translating from a dialect of the functional

language ML into the imperative language C. The

resulting coding style, essentially following a single-

assignment pattern, is not common in handwritten C

and may well collide with compiler code generation

errors purely on that account.

As an example consider the coloured Petri net in Fig.

5, which depicts part of the code of an instrument that

computes liquid density.

The C code that represents this might be:

static volatile double P1_mass;

static volatile double P2_volume;

static volatile double P3_density;

…

double T1_Compute_density (double x,

double y)

{

 double x_in = x;

 double y_in = y;

 double ret_out = x/y;

 return (ret_out);

}

…

P3_density = T1_Compute_density (P1_

mass, P2_volume);

The simple way to write this would be

P3 _ density = P1 _ mass/P2 _ volume

but in translating Petri nets into C we would probably

follow a convention that transitions are represented

Fig. 5

<real>

P3, density

mass/volume

T1, compute
density

volume

P2, volume

<real>

mass

<real>

P1, mass

Compiler
Validation 4

9 library.phaedsys.com

tested, with any particular MCU and switch settings

until you do it. And that is for a compiler binary issued

from a single source. For GCC compilers where there is

no single binary source point, the situation is even more

fraught with uncertainty.

Code compiled with untested switch combinations

may be more likely to elicit code generation errors than

code tested under switches covered by the developer’s

testing. In such cases it is prudent to undertake stress

testing with the switch combinations used by the project

to provide some measure of assurance that the compiler

behaves properly in those circumstances.

Compiler optimisations
One particular kind of compile-time switch warrants

special mention. It is usually recommended not to use C

compiler optimisations in critical systems. The problem

is that a C compiler will often apply optimisations by

default and the switches may switch them off rather

than on. The degree of control that this switching-off

gives varies from compiler to compiler. Some compilers

by design produce more efficient and compact object

code than others - not all compilers work in the same

way. Variation in how these various switches work in

combinations with the algorithms in the compiler and

with the combinations of the C source can produce quite

unexpected results.

C programs are particularly vulnerable to being

incorrectly optimised as a result of the lack of restriction

in the language compared with, say, Ada. An example

of unexpected results was found using a compiler that

had an option switch of “faster” or “smaller” code. With

several modules the “faster” switch actually gave smaller

object code than the “smaller” switch!

Nevertheless there are occasions on which the
use of optimisations is necessary. For example,
for a large air traffic control system optimisation
was used to meet performance requirements.
In other cases aggressive optimisation has been
used in order to fit additional features into a fixed
memory, as found in most embedded systems. In
the real world optimisations cannot always be
avoided.

The problem with such optimisations is that there

are often more bugs in generating optimised code

than un-optimised. This, of course, is where stress

testing comes into its own. Whilst some of the better

CVSs do have an element of back end testing, most

don’t. Those that do test the back end may do it only

partially. Randomly generated stress test programs

often find compiler bugs in back end code optimisers.

The value to the developer is that this highlights

usages that should be avoided or at least be subject

to increased testing rigour or special workarounds.

Fixed validation suites cannot match the capability of

stress tests in this area.

Compilers not tested on-target
Arguably the best reason for undertaking

compiler stress testing is that compiler developers

actually perform very few of their compiler tests on

real targets. The reason for this is simply that it takes

too long, because on-target test times are dominated

by the times taken to upload object code to a target

and download results from it. In the early days one

compiler validation failed because the number of

write, read, erase cycles killed the flash memory:

fortunately flash memory has moved on a long way

since then! (Though even in 2017 flash on test boards

can fail after it has been used for only a few full test

runs.

There have been cases where in order to do the

compiler validation tests the memory in the target

simulator was expanded beyond that of the real

hardware. This is because some of the test modules

would not fit in the memory space of the actual

hardware. It also meant that the tests could not be run

on the real target hardware.

One particular silicon vendor provides a compiler

that is very strenuously tested on-host using simulators

Example compiler switches

-c99 -c --cpu Cortex-M3 -D__

EVAL -D__MICROLIB -g -O3

--apcs=interwork --apcs /ropi/

rwpi --split_ldm --split_

sections --strict --enum_is_int

--signed_chars -DSTM32F10X_MD

-o “.\Obj*.o” --omf_browse “.\

Obj*.crf” --depend “.\Obj*.d”

Compiler
Validation 4

10library.phaedsys.com

for the target processor cores and every available fixed

test suite and stress test generation tool plus a large

volume of accumulated regression tests. This particular

compiler is quite possibly the most thoroughly tested in

the industry, yet its generated code may still not be tested

for the specific target processor silicon variant used by

a particular project. Significant numbers of the vendor’s

regression tests started life as stress test programs that

had found on-target errors previously missed by on-host

testing. Compiler testing is not a simple task

8 Combined testing
For most critical projects it may be advisable to

perform compiler testing using both a fixed validation

suite and pseudo-random stress tests. At least one

TÜV has required this for a SIL3 project running on a

safety-rated dual-core lockstep microcontroller. In such

cases a basic validation test suite augmented by random

stress tests provides a level of compiler assurance

commensurate with the criticality of the project.

It is reasonable to expect increasing requirements for

this combined form of testing for critical projects across

the industry sectors and indeed since 2015 the authors

have seen this beginning to happen.

9 Conclusion
Stress testing is a valuable complement to the use of

fixed validation suites in critical projects, by revealing

long dormant compiler code generator errors that could

lead to operational failures of critical products. While

this is normally thought of as referring to safety-critical

applications, you should also consider a critical product

one that could cause problems for you or your company

if it should be faulty in operation.

Stress testing of compilers can form a valuable

element, alongside traditional test suite compiler testing,

of a safety case for critical projects at IEC 61508 SIL3/4

or equivalent integrity levels. The Csmith stress test

generation tool is available free of charge and is suitable

for use with all embedded applications. Nevertheless,

we would argue that using a stress test generator tool

is a specialised task that should be undertaken only by

suitably qualified staff, as it requires technical control to

accredited test laboratory standards. Also it should only

be used as part of a coherent Compiler Test Plan that

involves formal CVSs, Regression Test Suites and other

testing. Phaedrus Systems consultants are qualified to

do this kind of testing and can advise on all aspects of

compiler validation for high-integrity developments.

It should be noted that there is more that can be

done. Even with a tested compiler, the project source

code should be written to conform to a coding standard,

a language subset, such as MISRA C, and be subjected

to static analysis. (This is mandatory for IEC 61508-7

(Functional Safety)). This approach will reduce problems

by avoiding the areas of the C language that programmers

often abuse or have problems with and can keep you out

of the darker areas of the compiler – today most compiler

companies test against MISRA C.

Compiler
Validation 4

11 library phaedsys com

References
[JeKr, 2009] Jensen, K., and Kristensen, L. M., Coloured Petri Nets: Modelling and Validation

of Concurrent Systems, Springer, July 2009, ISBN-10: 3642002838

[WiDa, 1989] Wichmann, B. A. and Davies, M., Experience with a compiler testing tool, NPL

Report DITC 139/89, National Physical Laboratory, UK, March 1989

[XYER, 2011] Xuejun Yang, Yang Chen, Eric Eide, John Regehr, Finding and

understanding bugs in C compilers, ACM SIGPLAN Notice

The Art in Embedded Systems
comes through Engineering discipline.

Compiler
Validation 5

On-Target Stress Testing of C Cross
Compilers

First edition September 2017

© Copyright Chris A Hills & Olwen Morgan 2017

The right of Chris A Hills & Olwen Morgan to be

identified as the authors of this work has been asserted

by them in accordance with the Copyright, Designs and

Patents Act 1988

Phaedrus Systems Library
The Phaedrus SystemsLibrary is a collection of useful

technical documents on development. This includes

project management, integrating tools like QA·C to IDE’s,

the use of debuggers, coding tricks and tips. The Library

also includes the QuEST series.

Copies of this paper (and subsequent versions) with

the associated files, will be available with other members

of the Library, at:

http://library.phaedsys.com

