
Compiler
Validation 3

The use of
Pre-Tests

For On-target
C Compiler
Validation

First Edition
by

Mrs Olwen Morgan CITP, MBCS
and

Eur Ing Chris Hills BSc , C. Eng.,
MIET, FRGS, FRSA

The Art in Embedded Systems
comes through Engineering discipline.

Compiler
Validation 3

Compiler
Validation 3

2 3library.phaedsys.com library.phaedsys.com

The use of Pre-Tests
For On-target

C Compiler
Validation :

Many software engineers have

heard of compiler validation tests

but there ismuch less awareness of

a crucial kind of test knownas a

pre-test.

1 Introduction
Many software engineers have heard of compiler

validation tests but there is much less awareness of a

crucial kind of test known as a pre-test. Pre-tests for

compiler validation were introduced in the early 1980s

by Wichmann and Cziechanowicz (WiCz, 1983) in

connection with their testing of Pascal compilers.

The need for such tests has been largely ignored by

developers of C compiler validation suites. This is

particularly unfortunate since such tests can save a lot of

time when setting up validation, even more so for C

compilers because C has a large number of variations.

For cross-compilers for embedded targets, in particular,

if you are doing on–target validation they are essential.

Contents
1 Introduction . 3

2What are pre-tests? . 3

3 The role of pre-tests for on-target C compiler validation 5
3.1 Delivery of results to the
host environment .6
3.2 Specifying the invocation options .7
3.3 Libraries supported on-target .7
3.4 Modified behaviour of standard library functions . 7
3.5 Implementation-defined and
unspecified features .8

4 A core set of pre-tests . 8

5 Testers’ responsibilities . 8

6 Conclusion and recommendations . 9

References . 9

2What are pre-tests?
As originally proposed by Wichmann and

Cziechanowicz, pre-tests are tests that precede the test

suite tests to show that a compiler correctly handles a

program that contains the same code as an error-

handling test apart from the single construct that elicits

the error. Thus, for example, a test program might

somewhere contain lines such as:

a = 0;

x /= a;

to test the behaviour on division by zero (typically to

help determine the format of run-time errormessages).A

Compiler
Validation 3

Compiler
Validation 3

4 5library.phaedsys.com library.phaedsys.com

corresponding pre-test would then contain the lines:

a = 1;

x /= a;

and differ from the division by zero case only in the 1

on the right-hand side of the assignment to be. If the pre-

test compiles and runs, then there is an increased degree

of confidence that the program containing the error is

failing only because of the division by zero and not for

some other reason.

The key thing here is that before you assume that a

test program contains only one error, you first ask

whether supposedly “correct” corresponding code

actually behaves the way you expect it to. What appears

“correct” codemay not be handled by the compiler in the

way expected, particularly for embedded targets. This

may not be at all obvious in the tests or the results. This

is particularly important for Cwhose standard from ISO-

C90 to C18 has an annex, G in C 90 and J in C99 to C18,

of implementation defined, undefined or unspecified

behaviour that runs to over four hundred items.

The ISO C standards leave the implementer wide

latitude in how certain things are implemented, hence

the long lists of implementation-defined, unspecified

and undefined features in the annexes to the standard. It

is by no means easy to devise programs that determine

the nature of such features by testing in the execution

environment. Moreover, it turns out that for C compilers

pre-tests have a much larger role in testing such features

than was present in the context in which Wichmann and

Cziechanowicz originally used pre-tests.

In fact, there are some surprisingly subtle problems in

testing diagnosing even well-known implementation-

defined and unspecified features such as:

• Whether plain char is signed or unsigned:

signed char is always signed and unsigned char is

always unsigned but plain char on its own can be either

– and this can often be set by a compiler option.

• Whether right-shifts propagate sign bits: again,

the compiler may offer an option to set this.

More subtle is that compilers for embedded MCU’s

will typically add, omit or modify things to work with

the physical MCU architecture in addition to the

implementation defined items in the C standard. For

example there are some 8-bit compilers that implement

enum as an 8-bit integer type (unsigned char) rather than

a 16-bit int.

Then there are unspecified and undefined items.

Most developers don’t realise there are these two

classifications, much less what theymean or indeed why

they are different. An example of unspecified behaviour

is the order in which the arguments to a function are

evaluated, whereas an example of undefined behaviour

is: the behaviour on integer overflow.

Further to confuse things, there is also Locale-Specific

implementation. An example of locale-specific

behaviour is whether the islower() function returns true

for characters other than the 26 lowercase Latin letters.

Developers who are not familiar with these matters

and the distinctions among them need to read the

version of the ISO-C standard that is relevant to their

compilers along with the compiler documentation.

Particular attention should also be paid to the 17 (as of

C99) “common extensions” also listed in annexG for C90

or annex J for C99-18. Both the compiler writer and the

test suite writer will have worked from the official ISO

9899 C language standard, as will any validating

organisation. Using anything other than the relevant

official ISO standard is pointless. Draft standards

and textbooks are just that, they will be different to the

published standard.

This is why compiler validation is best not left to the

normal project developers. Compiler validation requires

a painstaking discipline with a precise and detailed

approach to the appropriate C standard and the compiler

documentation. The pre-tests are the bedrock without

which any validation will not be valid.

printf(

yes\n

) :

printf(

no\n

));

return 0;

}

Aproblem here is that you don’t know whether abs is

implemented as a macro, so the test is inconclusive. You

could easily put in an #ifdef to test to for the presence

of a definition of abs as a macro but this takes effect in the

translation environment, which is not, if you are testing

on-target, the execution environment. Moreover, you

cannot be sure whether or not the #ifdef segment

would affect the interpretation of the rest of the code.

A way to address this problem is to use the pre-test:.

Precautionary pre-test

/* PreTestAbsExample.c */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int absfunc = (abs)(-1);

/* will call the abs function */

int absmacr = abs(-1);

/* possibly here a macro call */

printf(

\n(abs)

result same as abs result?

3The role of pre-tests for
on-target C compiler validation

Neither of the two main C compiler validation suites

(Perennial CVSA and SuperTest) contain deviance tests

and therefore neither uses pre-tests in the way originally

proposed by Wichmann and Cziechanowicz for Pascal

compiler testing. Also neither Perennial nor SuperTest

contain tests that seek to determine implementation-

defined or unspecified characteristics. But this does not

mean that pre-tests are of no use for C compilers.

In critical cases, and especially when using high-end

static analysis tools, it becomes essential to know what

the implementation-defined and unspecified aspects of

the implementation are. One example of this might be to

determine whether abs yields the same result both as a

function and as a macro, for which the following test and

pre-test might be used:

Test

/* TestAbsAfterPreTestExample.c */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int absfunc = (abs)(-1);

/* will call the abs function */

int absmacr = abs(-1);

/* possibly here a macro call */

printf(

\n(abs)

result same as abs result?

);

(void)(absfunc == absmacr ?

Compiler
Validation 3
Compiler

Validation 3

7 library.phaedsys.com

);

(void)(absfunc == absmacr ?

printf(

yes\n

) :

printf(

no\n

));

/* pre-test-specific code begins

*/

printf(

\nabs defined as a macro?

);

#ifdef abs

printf(

yes\n

);

#else

printf(

no\n

);

#endif

/* pre-test specific code ends */

return 0;

}

Note that the Pre-test differs from the on-target test

ONLY in adding the additional call to printf() and

the #ifdef segment and that this use of the pre-

processor occurs after the code that actually prints the

results of the comparing the two results from the calls.

Now, there is a basis for differential comparison. The

main on-target test has only the presence of #include

<stdlib.h> to tell it whetherabs is a macro or not. If

the results of comparing the call results are the same in

both programs, then one can reasonably infer that the

presence of the #ifdef segment in the Pre-test has not

actually affected the result of the on-target test but it has

also given us the useful diagnostic information ofwhether

or not abs is a macro.

Though this might seem rather paranoid, the author

knows of a case in which, using NFS over a large private

network, a compiler included aheader file fromadifferent

compiler on a differentmachine, leading to a hard-to-trace

error. This is exactly the kind of thing one needs to guard

against in compiler testing. Wayward configuration

control can easily make the results of a large compiler

testing effort wholly useless.

When performing on-target testing of C -compilers,

there are other kinds of needs for these tests. All compiler

testing has to make reasonable assumptions about the

compiler in order to have test procedures that can be

applied with little or no adaptation to any compiler for

which testing is needed.

One assumption in on-target testing of C compilers is

that the compiler provides some means for delivering

output from the target to the host environment. Another

assumption is that means exist to determine when a

program running on-target has terminated. A tester uses

pre-tests to obtain information on the compiler under test

(CUT) to extract the information that enables him/her to

set up correct parameters to guide a test control program.

It is highly desirable that such information be extracted in

a fixed and robust way since ad-hoc methods can be both

time-consuming and unreliable.

Core pre-tests for on-target C compiler validationmust

include programs to determine among other things:

(a) How results can be delivered back to the on-host

test control program,

(b) How program termination is detected,

(c) Which libraries are provided in the target

environment,

(d) Differences between on-host and on-target

behaviour of certain standard li-brary functions.

(e) The behaviour of implementation-defined and

unspecified features.

Items (a), (b), and (c) above are assistancemainly to the

tester. Items (d) and (e) will typically be of interest to

software engineers who need to configure static analysis

tools for trustworthy verification of c programs. We now

address these matters n turn.

3.1 Delivery of results to the
host environment
Most modern C cross-compilers support at least a

function-limited <stdio.h> in target environments

though some may not. This is because for embedded

systems the target architecture and system hardware

may not support some forms of I/O. For example there

may not hard disk, or even a file system to write to and

in any case limited memory. Also USB, serial or other

comms may or may not be present. Often the debug

channel is used. This may be JTAG, BDM or similar.

Some JTAG debuggers do have a serial RS232 like

communication channel that can be utilised.

Tests will have to be done to discover the size of test

that can be fitted in the target memory, speed of

download of the test set, speed of recovery of results.

This is an often over looked aspect as a test suite will be

anything from 50,000 tests upwards to 100,000 tests.

Imagine 100,000 cycles of compile, link, download, run,

recover results and even if automated this will take time.

Some tests will be loaded in groups rather than one at a

time. However, depending on target and available

memory the selection of groups of tests will need care.

Care that the tests can fit, run and the results can be

stored in memory and then be recovered.

If the largest single test block can not be fitted in

memory, can it be split? Often, where on-target testing is

not required an instruction-set simulator is used and the

memory spaces can be expanded to be larger on the

physical MCU. This is permitted for some validations

but not for on-target testing. Unless results can be

delivered from the target to the host, on-target validation

will not be possible.

The key aim of pre-tests in this context is to determine

what I/O facilities actually exist in the execution

environment and whether they can be used to deliver

results back to test control software running on a

separate host.

3.2 Specifying the invocation options

The key thing to determine about program

termination is whether the host-target debugging

protocol can recognise a return from main or

whether recognition depends on calling the exit

function with an appropriate argument. Where exit is

needed but the given test suite uses only return, then

a stream editing process will be needed to change each

final return from main to a call to exit.

The relevant information can be determined by two

test programs, one being Hello World with a final return

and the other being Hello World with a final exit. In

addition one needs to know whether the program

termination was normal, and any values returned or

abnormal.

3.3 Libraries supported on-target

The ISO-C standard differentiates between the

standard library for hosted and self-hosted programs.

This causes a lot of confusion. When running an OS like

Windows, UNIX, Linux the program is clearly hosted.

When the program is single threaded with no form of

operating system it is freestanding. However there is a

huge grey area as one moves from simple schedulers to

the common RTOS of varying complexity. The other big

problem is that most compilers for embedded systems

Compiler
Validation 3

Compiler
Validation 3

8 9library.phaedsys.com library.phaedsys.com

tend to not only include some, many, most, or all of the

hosted library. They can provide modified non-standard

versions of both the nominally hosted and nominally

freestanding standard libraries. Here again a detailed,

precise study of the compiler documentation is required.

In addition the MCU documentation needs to be

examined if maths is involved to see if there is maths, or

cryptographic hardware and how the compiler

determines if it uses software libraries or the hardware.

There may be two versions of the library, one for

software only and one for using the hardware maths

support.

Pre-tests for whether any particular library is

available on-target follow a common form. For each

standard library, pre-test programs are constructed to

test for the presence of the functions and macros that the

library provides. The presence of library functions can be

tested by attempting to take their addresses while the

presence of macros can be tested by attempting to

compile specimen invocations. There should be one pre-

test per function and one pre-test per macro.

3.4 Modified behaviour of standard library
functions

Pre-testing for the behaviour of standard library

functions that differ between host and target

environments is less straightforward than the pre-tests

already described. Two broad approaches are possible.

In principle, the testermay exclude suchmatters from

pre-testing and leave it to the main test suite to show an

error if on-target behaviour differs from on-host

behaviour. Since the C standard mandates only a few

headers in freestanding environments, this is the strict-

conformance testing approach. Since, however, a cross

compiler may make extensive modifications to the

standard library for embedded use, this approach,

though in principle correct, can be impractically

laborious.

Alternatively, the tester may seek to determine what

the relevant on-target behaviour is. This approach

requires a set of programs specifically designed to

diagnose implementation-defined, modified on-target

standard function behaviour. Such programs can be used

as pre-tests or, more conveniently, may be run in

addition to the programs of whatever test suite is being

used. This, however, requires much more work than the

other pre-tests described above. A compromise is simply

to determine the on-target behaviour of those functions

needed for testing to be possible at all, and of those

functions that an application actually uses.

3.5 Implementation-defined and
unspecified features
When using a high-end static analysis tool, the tool

will need to be given parameters that specify the

behaviour of implementation-defined and unspecified

language features. For this purpose, a substantial set of

tests may be needed, each comprising a pre-test and

main test, as in the example of checking whether abs

produces the same results as a function or a macro. In

practice, the number of such tests is likely to be

considerably greater than the number of tests needed to

handle each of the preceding four categories of pre-tests.

There are some 400 unspecified, undefined and

implementation defined items specifically highlighted

in the C Standard.

4 A core set of pre-tests

A typical core set of pre-tests that normally suffices

for on-target validation using a micro-controller

development board will cover:

(a) Checking whether on-target <stdio.h> can

return results from a Hello World program via a USB

debugging link between a host and a development

board.

(b) Checking how termination status is returned to

the host from the development board.

(c) Checking for the presence but not the

functionality of all other standard libraries.

(d) Checking the on-target behaviour of all library

functions that an application actually uses.

(e) Determining the nature of any implementation-

defined, unspecified, or locale-specific features that a

static checking tool needs to know about.

Such a core set determines all of the information that

the tester needs to set up reasonably robust test control

and to facilitate trustworthy static analysis of software. It

does not provide information that may be required to

resolve test failures resulting from non-conforming on-

target behaviour of standard functions but these matters

are almost always most conveniently addressed on a

case-by-case basis in anyway.

From the foregoing, it is clear that most of the

relevant kinds of pre-tests for C compilers are run to

determine how a fully automated test control program

should be set up. Hence the procedure for pre-testing is

to run the core set of pre-tests/main test pairs using a

simple test driver that does not seek to automate

everything. This requires manual supervision, which is

another reason for using core tests that do not try to

determine all on-target library function behaviour.

Hence also the set of pre-tests / main-test pairs needs to

be small enough so that manually supervised testing is

feasible.

The basic test sequence is to determine how program

termination is detected, then how results are delivered

and only then go on to examine the characteristics of

other libraries.

Ad-hoc modification of the test control programmay

sometimes be required to complete core pre-tests.

5Testers’ responsibilities

The bulk of the above-described kinds pre-tests help

the tester by showing whether on-target testing is

possible, how much is possible, how much it can be

automated and the how a test suite’s test control

program should be set up. Knowledge of these things is

indispensable for on-target testers.

Currently no major C compiler test suite or tool has a

coherent set of pre-tests / main test pairs. This is

understandable as there is much variation among

compilers, target MCUs and on-target implementation.

Pre-test requirements must therefore be addressed by

the tester, on a case-by-case basis. This further

emphasises the need for compiler validation to be

done by properly qualified testers.

6 Conclusion and recommendations

The pre-tests are not tasks that can be undertaken

lightly or by developers not experienced in Compiler

Validation. You need a copy of the applicable ISO-C

standard for the compiler, all the compiler

documentation and you need to be familiar with them.

This is necessary to trace test results to relevant ISO-C

clause numbers. There may or may not be a 100%

match on this but it is critical that it is documented and

understood.

It should be understood by clients for compiler

validation that this pre-test work will need to be

carried out. You don’t just “buy, install and run” a test

suite: the correct setting up of the test suite with pre-

tests is as crucial as the running of the test suite.

Otherwise the compiler validation results will be

worthless.

References

Wichmann, B.A., Ciechanowicz, Z.J., 1983. Pascal

compiler validation. Wiley, Chichester, ISBN:

0-471-90133-4

Compiler
Validation 3

The Art in Embedded Systems
comes through Engineering discipline.

The use of Pre-Tests
For On-target
C Compiler Validation

First edition January 2022

© Copyright Olwen Morgan & Chris Hills The right of

Olwen Morgan & Chris A Hills to be identified as the

authors of this work has been asserted by them in

accordance with the Copyright, Designs and

Patents Act 1988.

Contact the authors at:
info@phaedsys.com

Phaedrus Systems Library
The Phaedrus Systems Library is a collection of useful

technical documents on development. This includes

project management, requirements management, design

methods, integrating tools to IDEs, the use of debuggers,

coding tricks and tips. The Library also includes the

QuEST series.

Copies of this paper (and subsequent versions) with

the associated files, will be available with other members

of the Library, at:

http://library.phaedsys.com

