
Repeatability and
Reproducibility

in C Compiler
Testing:

Why testers sweat
the details

First Edition
 by

Mrs Olwen Morgan CITP, MBCS
and

Eur Ing Chris Hills BSc , C. Eng.,
MIET, MBCS, FRGS, FRSA

The Art in Embedded Systems
comes through Engineering discipline.

Compiler
Validation 2

Compiler
Validation 2

2library.phaedsys.com

Contents

1 Introduction 3

2 Repeatability and reproducibility 3
2.1 Repeatable . 3
2.2 Reproducible . 4

3 Things that can go wrong for repeatability 4
3.1 Identifying the compiler under test . 4
3.2 Specifying the invocation options . 5
3.3 Unstable test platform configuration or environment . 5
3.4 Inadequate test isolation. . 6
3.5 Lack of robustness in test driver software . 6
3.6 Lack of integrity in test reporting software . 6

4 Ensuring reproducibility 7

5 Working with the tester 7

6 Conclusion 7

Compiler
Validation 2

3 library.phaedsys.com

Repeatability and

Reproducibility

in C Compiler

Testing

Why testers sweat the details

Organisations validating systems against safety

standards are increasingly demanding evidence that

the compiler has been validated/tested. Well that is

not a problem - you just buy a test suite and run it

don’t you? Well, no, you don’t! There is a lot more

to it than that and the details really matter. Get one

“minor” detail wrong and the whole thing could

be invalid. This is: Why compiler testers sweat the

details

1 Introduction
So you have your compiler and a nice new test suite:

surely any half decent programmer can run the test suite

to validate a compiler? Actually that is like saying I have

some bricks, doors and windows in a pile therefore I

have a house that will pass inspection. To start with, not

all test suites are created equal.

A VEB Trabant, a Rolls Royce Silver Shadow and

Bugatti Veyron are all motorcars. One has very different

build quality to the other two and the two high quality

vehicles are aimed at very different markets. The choice

of compiler test suite will be covered in another paper, as

it requires an in-depth and detailed discussion. For this

paper we will assume that by some good fortune you

have the appropriate test suite.

It’s not just the big things like “Which compiler test

suite?” Compiler validators will be very fussy about

the technical details of compiler validation and clients

for validation services may sometimes not understand

why the tester is paying such close attention to what may

seem like minor configuration matters. The purpose of

this paper is to explain why the tester has to be so careful

so that you will also understand why not just anyone can

do compiler testing and why compiler testers sweat the

details.

2 Repeatability and reproducibility
In any form of testing or measurement it is important

to ensure that results are repeatable and reproducible.

2.1 Repeatable
A testing process is repeatable if, and only if, repeated

testing of the same property by the same tester using

the same test equipment produces results that satisfy

defined criteria of agreement. That is: every time you

Compiler
Validation 2

4library.phaedsys.com

run the tests on the same compiler build you should get

exactly the same results on that test rig.

2.2 Reproducible
A testing process is reproducible if, and only if,

repeated testing of the same property by diverse testers

using different (but typically technically compatible)

test equipment produces results that satisfy defined

criteria of agreement. Given the same criteria of

agreement, reproducibility is a stronger requirement

than repeatability.

That is - if some one else uses a different test system,

set-up to an equivalent but not identical specification,

and runs exactly the same tests they should get exactly

the same results.

Nobody would have any confidence in a testing

process that was not repeatable or not reproducible.

These are the cornerstones of accurate scientific testing

and measurement. However achieving repeatability and

reproducibility is not as simple as it sounds. There are

many seemingly trivial or inconsequential details that

can upset either repeatability or reproducibility.

3 Things that can go wrong
for repeatability

In compiler testing many things can undermine

repeatability and, ipso facto, reproducibility. The design

of and adherence to measures to ensure repeatability

constitutes the foundation of high-integrity compiler

testing. Potential problems include, but are not limited to:

• Incorrect identification of the compiler under test

• Incorrect identification of compiler invocation

options

• Unstable test platform configuration

• Inadequate test isolation

• Lack of robustness in test driver software

• Lack of integrity in test reporting software

Lack of proper attention to any of these matters can

render results unrepeatable, even when repeating the

same tests on the same test platform twice in succession

under the control of a test automation script. Obviously

the compiler tester must take steps to ensure that this kind

of thing cannot happen. These steps lead to very strict

procedures for test set-up and execution.

3.1 Identifying the compiler under test
Sometimes people will speak of, for example, “the

GCC compiler version 4.3” thinking that this uniquely

identifies the compiler for testing purposes. It doesn’t.

However to say “the IAR Cortex compiler, version 7.123”

will uniquely identify the compiler, as it is a specific

build and everyone who has the IAR Cortex compiler

7.123 has exactly the same package. This is because the

IAR compiler is issued as a binary from a single point

and from a strictly controlled development process.

This will be true for other commercial compilers such as

those from Keil, Green Hills, Byte Craft and, dare I say

it, Microsoft compilers. So when IAR/Keil/Green Hills/

MS etc. say they have 10,000 users for “proven in use”

that means that there are 10,000 users using an identical

compiler [binary] package. However you will still need

to confirm the details of the contents of the rest of the

compiler package.

The GCC (GNU Compiler Collection) is a collection of

packages from many sources that may differ depending

on which of the various distributions you pick. While

the GCC compiler front end may be reasonably stable

across most GCC compilers, the back end and associated

components may differ. This may include the situation

where a set of identical sources is built by different (or

rather, non-identical) compilers. Your GCC compiler,

despite millions of GCC users globally, will have a

“proven in use” population of one - you.

The compiler tester needs to identify all the

components of the compiler suite - in detail. The required

details include, at least the following:

• The compiler developer’s version number for the

compiler and who the developer is. For GCC, you

also need the developer and the distribution and

patch levels of all the components as these come

from multiple sources.

• The version numbers, patch levels and patch

histories for any associated libraries, linkers,

other components, target simulators and on-

target debugging protocol software or devices.

• When testing on-target using a development

board, the version of the board, including silicon

revision level, of the target microcontroller. Some

Compiler
Validation 2

5 library.phaedsys.com

Compiler B

HOLD(128,0,0) OPTIMIZE (7,SPEED)

BROWSE ORDER NOAREGS DEBUG

OBJECTEXTEND CODE LISTINCLUDE

SYMBOLS TABS (2)

The options need to be recorded in a single file. This

is used as the source for all options when the compiler

is invoked under test. The compiler validator needs to

understand what all the invocation options do and how

they interact.

There are also going to be default options that are

not shown on the command line. While it is not always

straightforward to identify what the default options

actually are, or how they interact, it is essential to state

them explicitly: they may have been overriden by other

options.

3 3 Unstable test platform con-
figuration or environment

For critical systems it may be a requirement that the

test system be maintained in commission for the market

life of the product. For commercial aircraft, railways, the

nuclear industry and others this can exceed 30 years. In

2015 the authors were called on to provide test hardware

for a project that had first shipped in 2000: system

maintenance was required and therefore there was a

need for retesting.

You can’t simply do compiler validation by

reloading the test suite on a development team PC that

is continually changing. One option is to freeze the

hardware configuration of the test platform and mothball

it in a quarantined store. This also requires retaining the

relevant operating system software release media.

To re-establish a mothballed test platform it must be

set up from scratch by reinstalling all necessary software

configuration items. This can be a surprisingly difficult

operation if not done very carefully. It must not rely on

software downloads from the internet; if they are still

available they may have changed over time. It must

also set up the original tester’s operating system shell

environment from scratch. As far as possible it must not

rely on the user’s log-in environment variables but be set

MCUs have multiple revision levels, which

are usually indicated by additional suffixes on

the MCU part number (although these are not

normally part of the part’s order number). There

have been cases where a “feature adjustment”,

a bug fix between revisions, or even a mid-run

change of the MCU reel on a pick and place

machine has affected the teat results.

Failure to accurately identify and record these items

can render the results of even a single test program

wholly unrepeatable.

3.2 Specifying the invocation options
Errors in specifying compiler invocation options are,

in the authors’ experience, the second most common

cause of repeatability problems. Most compiler vendors

delight in telling you how many MCU variants their

compilers support, especially since the spread of

Cortex. Then there can be memory models (for those

programming MCU’s like the 8051, which itself has

nearly 1000 variants) and switches for compiling for size

or speed. There may be library options that use different

standard libraries that behave differently e.g variants of

printf . The sizes of the integral types may affect tests.

What size are char, short, in and long? This is apart from

looking at all the implementation-defined, unspecified

and undefined parts of the C standard (there are some 20

pages of these in C99 & C 11) to check what the compiler

does with them. Is plain char signed or unsigned in

your compiler?

Here are a couple of compiler invocation strings for

different compilers; the compiler validator will need to

know precisely what every item is, and what it does.

Compiler A

--c99 -c --cpu Cortex-M3 -D__

EVAL -D__MICROLIB -g -O3

--apcs=interwork --apcs /ropi/

rwpi --split_ldm --split_sections

--strict --enum_is_int --signed_

chars -DSTM32F10X_MD -o “.\Obj*.o”

--omf_browse “.\Obj*.crf” --depend

“.\Obj*.d”

Compiler
Validation 2

6library.phaedsys.com

up to use testing-specific variables. Special environment

set-up tools are often the best option for this.

It is important that the test procedure is designed to

ensure that the tester’s shell environment is not corrupted

during test operation. This is especially important

when a failed test can leave the compiler invocation

environment in an indeterminate state.

In a short paper such as this is it not possible to

identify all of the things that can go wrong in test

platform configuration but clients for test services should

appreciate that problems in this area are a substantial

cause of repeatability problems.

Suffice it to say the compiler tester’s computer must be

one dedicated for the purpose and not used for anything

else as you are going to have to do a complete clean install

from the OS upwards. The authors have such a (custom

built) PC and sets of external hard drives containing

disk images that preserve entire software environments

for repeat testing. You are not going to simply run the

compiler test suite on a random development PC that

changes state every time it is turned on.

3.4 Inadequate test isolation
While a modern compiler should pass almost all

compiler validation tests, there remain occasions on

which a test will fail. When running tests on-target, it is

essential to ensure that the state of the target can be re-

set and that the test driver can recover from the failure so

that it does not prejudice the results of subsequent tests.

In the early days of compiler validation, test suites

were small and could be organised so that a single test

program contained a single test. This is impractical for

modern large test suites running on embedded targets,

where a single test program may contain over a hundred

individual tests. The test suite should incorporate

measures to ensure that when an individual test fails

within a test program, that test can be isolated and re-run

on its own: typically special software either extracts the

failed test from its test program or suppresses all other

tests within the same program. The suite developer has

to consider considerable technical detail to do this in the

most robust way, to avoid re-running the test under test

conditions that are inadvertently different from those of

its original occurrence.

A lot of this comes down to the design of the test

suite. Please see our paper on choosing a test suite for an

in-depth discussion of this.

3.5 Lack of robustness in test driver soft-
ware

A corollary of the need for manageable test isolation

is the need for test driver software to be exceptionally

robust. It must remain unaffected by the failure of any

test and be able to run subsequent tests under the same

conditions as preceding tests. This requirement can be

largely met by appropriate driver design but again many

configuration checks have to be considered to ensure that

the appropriate degree of robustness is actually realised.

In general this requires very high quality code written

to very strict guidelines. However, as noted, the design of

the drivers also has to be very carefully thought through.

This is not a trivial thing to do and requires a thorough

understanding of how the test suite works.

3.6 Lack of integrity in test reporting soft-
ware

Finally, the test reporting software must be as

carefully engineered as all other aspects of the test driver

software. It is not unknown for test report generator

software to generate incorrect reports, for example those

from a previous test run with different results. Again,

careful configuration checks are needed. Version control

is paramount and so is picking up the correct files.

Time and version stamping is essential, as is the control

framework. Mistakes here that give a pass when there

should have been a fail will be costly.

The authors know of one case where due to errors

the rest results submitted were not accurate and the

Notified Body did a complete audit and overhaul of the

whole development and test procedures of a project, and

required improvements in the project, before issuing

certification.

Compiler
Validation 2

7 library.phaedsys.com

Compiler
Validation 2

4 Ensuring reproducibility
All of the potential problem areas for repeatability

are similarly potentially problematic for reproducibility.

After having performed a validation for a client, it is

normal practice for the tester to ensure that the client can

reproduce the tests on similar but compatible hardware.

The normal way for the tester to address this is to perform

tests on his/her own test platform, then reproduce them

on the client’s platform. In this way the client should

always be left with a system which can reproduce tests as

often as required. To facilitate this, the authors provide

test environment software images on suitable media as

part of the service, usually on an external hard drive (an

SSD these days) and/or a DVD/CD.

Clients should be prepared to work with the tester so

that the initial reproduction can be made on the tester’s

own host platform. This may involve further technical

questions to be answered.

5 Working with the tester
Before undertaking compiler testing, a professional

tester will ask a validation client for a significant

volume of technical information: information essential

to providing an assurance of reproducibility and hence

to the success of testing. Usually most of the required

information can be summarised through a checklist.

Asking the client to complete such a checklist is normal

working procedure for the tester.

It is not unusual for clients filling in such checklists

to make several attempts to get correct information:

frequently the issue is the compiler’s invocation options.

If the client does not have the answer or is not 100% sure,

a “don’t know” answer is better than a guess. Also the

client should never assume but check. The authors have

often asked questions, and the client has been surprised

that the correct answers were not what they had assumed

them to be.

The validation client may need to consult the compiler

vendor in some cases. It is also normal for a tester to work

collaboratively with both the validation client and the

compiler developer to ensure that relevant information

is correctly established.

Clients should be prepared for a fairly interactive

process as the tester seeks to obtain all the necessary

information. It is not just the tester being pedantic. A

lot of detail is needed to ensure that tests are repeatable

otherwise the validation process is an expensive waste

of time and money and may result in the product

certification being withheld.

6 Conclusion
Compiler testing has many technical pitfalls. It is

not something someone who is not trained in compiler

validation can do: it needs rigorous technical discipline

and no corner cutting. Compiler testers are meticulous

and they have to be. Certifying bodies appear to be

tightening up on compiler validation and have now

started to make specific on-target validation requests.

Once a company has been though a compiler

validation for a project, subsequent validation for other

projects should be a lot faster and smoother, because the

developer will have much of the information and will

know how to pull the rest of it together with less pain

than the first time.

For a compiler tester to get it right, he needs a

substantial amount of technical information from

the client and compiler vendor. Conveying all this

information takes time and may involve repeated

dialogue between the parties concerned. Clients for

compiler testing should be aware of this in advance so

that it does not come as a shock when the compiler

tester sweats the details!

The Art in Embedded Systems
comes through Engineering discipline.

Compiler
Validation 2

Repeatability and Reproducibility in C
Compiler Testing:
Why testers sweat the details

First edition August 2016

© Copyright Olwen Morgan & Chris Hills 2016

The right of Olwen Morgan & Chris A Hills to be

identified as the authors of this work has been asserted

by them in accordance with the Copyright, Designs and

Patents Act 1988.

Contact the authors at: info@phaedsys com

Phaedrus Systems Library
The Phaedrus Systems Library is a collection of useful

technical documents on development. This includes

project management, requirements management, design

methods, integrating tools to IDE’s, the use of debuggers,

coding tricks and tips. The Library also includes the

QuEST series.

Copies of this paper (and subsequent versions) with

the associated files, will be available with other members

of the Library, at:

http://library phaedsys com

