
 

 

Will the Real IMDS Please Stand Up? 
 

How to tell the difference between real and imitation 

in-memory database systems, and why it matters. 

 

 

 

McObject LLC 

33309 1
st
 Way South 

Suite A-208 

Federal Way, WA 98003 

 

Phone: 425-888-8505 

E-mail: info@ǇƘŀŜŘǎȅǎ.com 

www.ǇƘŀŜŘǎȅǎ.com 

 

Copyright 2013, McObject LLC 

mailto:info@phaedsys.com
http://http://www.phaedsys.com/principals/mcobject/index.html
chills
Typewritten Text
Supplied by 



Introduction 

Declining RAM cost, emergence of data-hungry real-time systems, and other factors 

drove the growth of in-memory database systems (IMDSs) over the past decade. This technology 

offers the features of traditional (file system-based) database management systems (DBMSs)—

including transactions, multi-user concurrency control, and high level data definition and 

querying languages—but with a key difference: in-memory databases store records in main 

memory, eliminating disk storage and related overhead. This enables IMDSs to offer faster 

performance as well as a more streamlined design and smaller code size. 

In-memory databases have changed the software landscape in several ways. Whole 

categories of applications that previously could not benefit from database systems are now able 

to do so. IMDSs’ growing popularity has sparked mergers and acquisitions involving the largest 

technology companies. However, one troubling recent trend, which should matter to anyone 

considering using the technology, is a flurry of products falsely claiming to be in-memory 

database systems. This report examines a handful of these imitators and explains why they fail to 

deliver on IMDSs’ promise. The goal is to better educate potential users. 

 

Why In-Memory Database Systems? 

Random-access memory (RAM) has steadily declined in price to the point where desktop 

and back office systems are customarily configured with amounts of RAM ranging up to 

hundreds of gigabytes.  In memory database storage that would have been prohibitively 

expensive 20, or even 10, years ago is easily within reach today. 

8- and 16-bit embedded systems simply do not have the ability to address sufficient 

memory to be able to take advantage of an in-memory database.  Data management code for 

these systems is either extremely simple or consists of pushing the data upstream to systems with 

greater processing power. However, as embedded systems have evolved to 32- and 64-bit 

processors, more data is processed (stored, sorted, indexed, etc.) at the point of collection.  

Embedded systems typically require an in-memory database for these tasks, for reasons that 

include real-time performance demands, harsh operating environments that rule out use of a 

mechanical hard disk drive, and minimal power resources that preclude motorized “spinning 

memory” (disk storage). 

A wide variety of embedded and real-time applications can benefit from database 

management features such as concurrent access, fast and flexible indexing, and transactions. But 



the nature of data in these systems is often transient, making conventional file system-based
1
 (i.e. 

disk-based) database systems an inappropriate choice.  A few examples include network routers 

(which have no spinning memory), set-top box electronic program guides (if lost due to power 

interruption, the programming guide is simply downloaded from the cable headend or satellite 

transponder), and cached social network graphs (think LinkedIn, Tagged, etc). 

Finally, many embedded systems and real-time enterprise applications (including 

business intelligence, Web caching and others) impose performance demands that can only be 

met with an in-memory database system.   A battlefield command and control system, sensor 

fusion application or other critical real-time system simply can’t wait while data is retrieved from 

disk, and would suffer from disk-based DBMSs’ inherent overhead caused by functions 

including cache management and data transfer. 

Innovation and Imitation 

Companies and products such as Polyhedra, TimesTen, and eXtremeDB represented the 

first wave of IMDSs. Their growth occurred both in many application types that clearly could not 

accommodate conventional DBMSs and in some systems where use of disk-based databases 

would likely have been used.  This drove traditional embedded and enterprise software vendors, 

including IBM and Oracle, to acquire several of the early IMDS companies. 

As might be expected, the success of in-memory database systems motivated many 

DBMS vendors to try to protect their slice of the database system market. As a result, numerous 

vendors now market their variations on traditional DBMS software as “in memory.” Wikipedia’s 

in-memory database article
2
 documents the proliferating claims. In July 2007, the page listed just 

eight commercial and open source IMDSs (or products claiming to be such). By February 2010, 

the list had mushroomed to 24 entries. While Wikipedia may not be an authoritative source on 

market size and growth, this certainly documents that claiming to be an IMDS has been a hot 

technology trend in recent years! 

The problem is, while many of these products exploit cheap and abundant memory, they 

are not in-memory database systems. Understanding the distinction between these knockoffs and 

actual IMDSs is critical for potential users whose problem domain is best served by the 

technology.  The differences can affect the hardware requirements (and therefore total cost of 

ownership), performance, time-to-revenue, and ultimately the success or failure of a solution. In 

order to tell the difference between real and fake IMDSs, two key areas to examine are origins 

and wholeness. 

                                                           
1
 Throughout this paper we will use the terms “file system-based”, “on-disk” and “disk-based” interchangeably to 

refer to traditional DBMSs that are “hard-wired” to store records to a file system on persistent media. While this 

media is usually a hard disk, it can also be a flash memory stick, solid state drive (SSD) or some other storage. 

2
 http://en.wikipedia.org/wiki/In_memory_database  

http://en.wikipedia.org/wiki/In_memory_database


Origins 

 First, a true IMDS is one that was written, from the start and from the bottom up, with the 

intent of being an in-memory database system.  The design goals and optimization strategies 

used to develop IMDSs are diametrically opposed to those underpinning traditional, file system-

based DBMSs.  Traditional databases are created using a strategy of minimizing file I/O, even at 

the expense of consuming more CPU cycles and memory. This design strategy stems from the 

vendors’ recognition of I/O as the single biggest threat to their databases’ performance. In 

contrast, in-memory database systems eliminate disk I/O from the beginning. Their overriding 

optimization goal is reducing memory and CPU demands.  Once these opposing strategies—

minimizing I/O vs. minimizing memory and CPU demands—are “baked into” database system 

code, they can’t be undone, short of a rewrite. 

Note that having minimized memory and CPU demands from the start, the in-memory 

database system provider always has the option, later on, to “use up” some of those spare CPU 

cycles and bytes of memory if the design goals change—for example, to create a hybrid database 

system that permits the user to selectively add on-disk storage back into an application. 

Conversely, the creators of on-disk (traditional) DBMSs cannot “un-use” the CPU cycles or 

memory that are consumed to achieve the fundamental design goal of minimizing I/O in their 

products. 

When a DBMS designed for disk storage is recast as an IMDS—often by simply 

redeploying the original database system with memory-based analogs of a file system—artifacts 

of its origins remain. These can inhibit performance and waste system resources. For example, 

traditional DBMSs store redundant data (that is, data that is already stored in tables) in their 

indexes. This is useful for on-disk databases: if sought-after data resides in the index, there is no 

need to retrieve it from the data file, and I/O is prevented. But when the vendor later deploys this 

database in RAM and re-christens it as an IMDS, the redundant data is typically still present in 

the indexes, consuming storage space even though the entire table is now in memory. There is no 

longer any performance advantage from the redundant data—it just wastes memory. In contrast, 

a database designed from the ground up as an IMDS does not store redundant data in its indexes. 

Maintaining a cache is another artifact. Traditional databases keep recently-used records 

in cache, so they can be accessed without I/O. But managing the cache is itself a process that 

requires substantial memory and CPU cycles, so even a “cache hit” underperforms an in-memory 

database. This is significant given that some vendors simply add a feature that causes 100% of a 

database to be cached, to justify slapping an IMDS label on their product. 

 

 

 



 

 

Figure 1. 

Yet another artifact is on-disk database system architectures’ requirement that data be 

transferred numerous times as it is used. Figure 1 shows the handoffs required for an application 

to read a piece of data from an on-disk database, modify it and write that record back to the 

database. These steps, which require time and CPU cycles, are still present in nearly all the 

DBMSs that have re-christened themselves as IMDSs. In contrast, an IMDS has just a single data 

transfer (in each direction).  Data is copied directly from the IMDS to the application, and back 

from the application to the database, as shown in Figure 2.  There are no intermediate copies in a 

database cache or file system cache. 

 



 

Figure 2. 

 

Do such artifacts really hinder performance? One benchmark test
3
 addressed the question, 

measuring performance of an application using an embedded IMDS alongside the same 

application with an embedded disk-based DBMS. The application with the traditional database 

was benchmarked in normal mode, and also when deployed on a RAM-disk. The latter scenario 

is analogous to many of today’s imitation IMDSs: they merely eliminate physical disk I/O while 

retaining caching, data transfer and other traits. 

In the benchmark, moving the on-disk database to a RAM drive quadrupled read 

performance, and tripled database write (update) performance. But the same application running 

on a true in-memory database system delivered much more dramatic performance gains: the 

IMDS outperformed the RAM-disk database by 4x for database reads and by a startling 420x for 

database writes. 

Wholeness 

An IMDS is a type of database management system, and it should be a complete DBMS.  

It should not sacrifice functionality, or impose superfluous functionality, just to accommodate in-

memory storage of tables or of the entire DBMS.  Sacrifices like inability to support concurrent 

access, or non-working remnants of functions involving disk-access (such as useless transaction 

logging files in some of the products discussed below), are giveaways that an old-style DBMS is 

being shoehorned into the role of an IMDS. 

With that backdrop, let’s examine a few specific database systems. 

Oracle’s BerkeleyDB 

Berkeley DB is probably the best known of the class of DBMS products that is 

sometimes mistakenly classified as an in-memory database system.  A quick examination of the 

product’s in-memory offering reveals that, in addition to some pretty serious limitations, it really 

just substitutes RAM for file storage. All the other assumptions about how to build and maintain 

the database are unchanged (such as cache, indexes, and so on). 

The following passages from the BerkeleyDB documentation illustrate the point: 

 “The DB cache must be configured large enough to hold all your data in memory. If you 

do not size your cache large enough, then DB will attempt to write pages to disk. In a 

disk-less system, this will result in an abnormal termination of your program.” 

 

                                                           
3
 See “Examining Main Memory Databases”, iApplianceWeb, January 4, 2002, available at 

http://www.iapplianceweb.com/story/OEG20020104S0070.htm.  

http://www.iapplianceweb.com/story/OEG20020104S0070.htm


This indicates that the in-memory capability of BerkeleyDB really just means creating a cache 

large enough to hold 100% of the database. And since this “IMDS” capability amounts to large 

scale caching, all of the overheads associated with caching in traditional DBMSs are still present. 

There is no point having a cache for an in-memory database – why cache what is already in 

memory? 

 

 “…logs are still required if you want transactional benefits … (such as isolation and 

atomicity)… you must enable logs but configure them to reside only within memory.” 

 

On-disk database systems invariably use transaction log files that require disk writes (and their 

associated I/O), in order to provide the ability to roll back an aborted transaction, or perform roll 

forward recovery after a crash.  With BerkeleyDB, the log file is apparently inextricably tied into 

the transaction properties of isolation and atomicity, as well. In contrast, IMDSs are designed to 

provide logless transactions. A transaction log may be presented as an option, often with tuning 

parameters that allow the user to trade off durability and performance. The entire notion of 

BerkeleyDB’s mandatory “transaction log,” as presented above, is a by-product of how an on-

disk database operates. Since its transaction log now “reside[s] only within memory,” it can no 

longer serve the purpose of providing recovery. The log itself is a useless appendage consuming 

valuable memory, and the process of writing to it is a waste of CPU cycles. 

 

 “…your in-memory only application must be a single-process, although it can be multi-

threaded.” 

 

This passage reveals an onerous restriction on the in-memory BerkeleyDB technology: the 

inability to support more than one process.  There is no reason an in-memory database should not 

be able to support multiple processes simply by placing the database into shared memory.  

BerkeleyDB lacks this ability to use shared memory. 

 

 “…make sure the in-memory log buffer is large enough that no transaction will ever span 

the entire buffer…” 

 

The content above from the BerkeleyDB documentation further highlights the fact that support 

for true IMDS capabilities is incomplete. Why should the technology limit the maximum size of 

a transaction?  After all, when the transaction buffer is a disk file, there is no such limit.  And 

there is no inherent reason why the maximum size of a transaction in an in-memory database 

should be predefined.  But since BerkeleyDB’s implementation of an in-memory database 

amounts to in-memory analogs for file-based artifacts like transaction logs and buffers, 

limitations like this have to be imposed. 



 MySQL 

MySQL, an open source DBMS, offers something called “memory tables.” This feature 

promotes a way to keep the database in memory, in order to boost performance. Unfortunately, 

the capability comes with serious limitations. First, memory tables must use fixed length slots 

and cannot contain BLOB or TEXT columns. (Database files are usually segmented into pages, 

and each page is further segmented into a number of slots.  To accommodate variable length 

data, a DBMS can either spread a single row across multiple slots or can allow the size of the 

slots themselves to vary.  MySQL allows in-memory table rows to do neither.) 

Also, a MySQL memory table’s maximum size is 4 GB and its maximum key length is 

500 bytes.  The key length restriction indicates that the physical structure of MySQL’s b-tree 

index nodes is the same in both memory tables and (traditional) file tables. When the key values 

are not stored in the key slot (as in an in-memory database) they will not affect the width of the 

slot and therefore do not impose artificial limits on the length of a key. In short, this limitation 

shows that MySQL’s memory tables implementation suffers from the “artifact” of extra copies 

of data stored within its indexes. As discussed above, this redundant data serves the useful 

purpose of minimizing I/O in disk-based databases, but simply wastes memory in an in-memory 

database system. 

In addition, space that is freed by deleting rows in a MySQL memory table can only be 

reused for new rows of that same table.  In contrast, when something is deleted from an IMDS, 

the free space goes back into the general database memory pool and can be reused for any 

subsequent need, whether it is for a row of a different table, or a page for a tree node, or anything 

else. 

Finally, when using MySQL’s replication, “slave” replica databases do not recognize 

when a “master” (main) database ceases to exist. If the master node goes down, the memory 

table is wiped out on that node, but remains present on the slave(s). When the master database 

comes back up and the replica(s) re-attach to it, all on-disk tables are automatically re-

synchronized, but memory table are treated differently: they remain present on the slave nodes 

only, but are absent in the master database until some explicit action is taken to re-create them 

there. So, for memory tables, one of the key notions of database replication – that master and 

slave nodes must be kept synchronized, without explicit action being taken by the application – 

is broken in this circumstance. In contrast, an IMDS will re-synchronize the database, even in the 

case of a hybrid (in-memory and on-disk) database. 

SQLite 

The open source SQLite embedded database also offers memory tables. In its 

implementation, memory tables cannot be shared by other users and this relegates the memory 

tables’ usefulness to that of mere user-defined temporary tables. 



When SQLite’s memory tables feature is used, all of the tables in a given database must 

be of that type. As a technique to gain greater concurrency (since SQLite relies on database 

locking), SQLite allows an application to open and/or attach to more than one database, with 

transactions that span database boundaries.  However, according to the SQLite documentation, if 

the main database is in-memory, then SQLite no longer enforces the ACID (Atomic, Consistent, 

Isolated and Durable) properties of transactions. In other words, if the system fails during a 

transaction that spans database “A” (in-memory) and database “B” (on-disk), SQLite will not 

guarantee the integrity of the “B” database.  

In-memory databases cannot be saved to persistent storage with the SQLite product, 

though you can find one or more third party patches that will apparently supplement SQLite with 

this ability. In contrast, while in-memory databases eliminate the disk writes that are mandatory 

at various points in traditional databases’ processing, IMDSs typically provide features that 

allow optional, periodic streaming of data to persistent storage. 

SQLite’s memory tables feature lacks the design criteria—and the capabilities—of a true 

in-memory database system. The constraints indicate memory tables’ intended use was more as 

temporary tables—for example, to support fast lookup of coded values—before some promoters 

of SQLite decided to use this feature to attempt to jump on the IMDS bandwagon. 

In some cases, SQlite’s integration of memory tables and file tables is incomplete. In the 

case described above, where support for ACID-compliant transactions can lapse, this flaw can 

threaten to compromise data integrity.  In contrast, a true in-memory database system (like any 

DBMS worthy of the name) regards integrity of the entire database as a fundamental covenant 

between the system and users. 

RDM Embedded 

RDM Embedded is perhaps the most recent of the in-memory database knock-offs. As 

with BerkeleyDB, the RDM Embedded response to the IMDS challenge was simply to replace 

disk-based files with shared memory and call this an in-memory database.  All the inner 

workings of the file system-based database run-time are unchanged.  Indexes require as much 

space as if they were created on disk.  The run-time maintains a transaction activity file (TAF), 

and spawns transaction log files for each user/process that has opened the database, to support 

recovery in case one of the processes crashes (even though these log files will now reside 

entirely in shared memory, making them useless in the event of system failure).  This “in-

memory database” also still maintains and manages a cache, exercising its lookup and other 

cache-related logic for every database access—even though the cache now means nothing, since 

the entire database is in memory. 

The existence of a cache is particularly challenging, for reasons inherent in RDM 

Embedded’s architecture. The product requires a minimum cache size (specified in number of 

pages) as well as “transaction overflow” pages.  Database caches use a least-recently-used (LRU) 



algorithm to determine what page to remove when the cache is full and a new page needs to be 

brought in to satisfy a read request. When the cache is extremely small, the likelihood that any 

given page will be in cache is also quite small, causing the database system to thrash on the 

cache (constantly flushing pages in order to bring in new pages).  This wastes CPU cycles. The 

application faces a less than ideal situation. It must either permit thrashing (and suffer the 

performance consequences), or create a larger cache, which is redundant because it is already 

guaranteed to be in memory. 

In RDM Embedded, the transaction log file is used as overflow when a transaction 

modifies more database pages than can be cached.  For example, if 1) the cache is 8 pages, 2) 

every page has been modified, and 3) the transaction needs to read data that is not in cache, then 

one of the modified 8 pages has to be removed from the cache to make room for the incoming 

page.  But the modified page cannot just be discarded or overwritten. It has to be kept 

somewhere so that when the transaction is committed, this page gets written back to the 

database.  In RDM Embedded, this is done by writing the modified page to the transaction log 

file.  When the RDM database is in memory, this will limit the maximum size of a transaction to 

the number of pages that will fit in the shared memory segment that is created to represent the 

LOG file. Let’s also look at how this impacts performance: 



 

Database Pages Cache Pages (4) LOG File Pages 

Database Pages Cache Pages (4) LOG File Pages 

This represents the 

database, cache, and 

log files at a point 

when the cache is full 

during a write 

transaction (the 

application has caused 

four pages of the 

cache to be modified 

by 

insert/update/delete 

operations). 

When a fifth page 

must be read, one of 

the four modified 

pages has to be 

moved from the cache 

to the log file to make 

room in the cache for 

the new page. 

(continued on next 

page) 



Database Pages Cache Pages (4) LOG File Pages 

Database Pages Cache Pages (4) LOG File Pages 

This represents the 

state of the database, 

cache and log file after 

removing one page 

from cache and reading 

another page from the 

database into the 

cache. 

If the application needs 

to read a record that 

exists on the page that 

was previously flushed, 

another page has to be 

moved from cache to 

the log file, and then 

the log file page moved 

back into cache. 

As a transaction 

continues, it’s clear how 

the small size of the 

cache exacerbates the 

need to constantly 

move pages between 

the log “file” and cache. 



Because RDM Embedded requires different shared memory segments for data files and key files, 

and there has to be at least one of each, the database will also be unable to use memory freed by, 

for example, deleting rows of a table, for a purpose other than adding new rows.  As stated above 

in reference to SQLite’s memory tables, a true in-memory database should have just a single 

memory pool and provide flexibility to use memory as needed. 

Sound Memory Management 

Another key characteristic of true in-memory database systems is their reliance on sound 

memory management.  Specifically, memory must be managed as efficiently as possible—one 

wasted byte per record means 1 million wasted bytes in a relatively small database of 1 million 

records.  This presents demands on database system code in several ways. First, it affects how 

objects are laid out in storage.  A disk-based DBMS would likely store data as it is defined, e.g. 

 create table XYZ ( char[3] abc; float def; ) 

This would result in a byte of padding between ‘abc’ and ‘def’, because floating point numbers 

must be aligned on an even byte (or even word) boundary.  An in-memory database would 

hopefully be more intelligent about data layout, and rearrange the data so that ‘def’ is stored first, 

followed by ‘abc’, because character strings have no alignment requirement.  

Second, the de facto memory manager (usually malloc/free in C or new/delete in C++) 

used within the source code of the vast majority of DBMSs imposes significant inefficiencies.  

These are general purpose memory managers, which perform acceptably for most allocation 

patterns, but do not excel for any one pattern.  Substantial overhead is built into them. For 

example, in malloc/free and new/delete, the heap of memory is organized as a singly-linked list 

of pointers to free blocks.  Each block has a size.  So each block of free memory has 8 bytes of 

overhead (a 4 byte pointer to the next free block, and the 4-byte size of the block itself).  As 

memory becomes more fragmented (more free blocks of increasingly smaller sizes), the 

proportionate overhead of managing it becomes greater.  In addition, the time to walk the chain 

of pointers to find a free block of the required size can take longer and longer (and eventually 

fail, if no sufficiently large free block exists due to fragmentation).  There are memory allocators 

that exhibit less overhead and better performance, such as block allocators, bitmap allocators, 

stack allocators, etc. Given that memory is the most precious resource for in-memory databases, 

an IMDS should employ these superior memory managers. 

Finally, for IMDSs, the heap memory is a shared resource and access to the pointer chain 

must be serialized.  In particular, chaos would ensue if one task in the process of breaking the 

chain to insert a new link (as when freeing memory) is swapped out by the scheduler, and  

another task is allowed to walk the (now broken) chain (as when malloc is searching for a free 

block large enough to satisfy a memory allocation request).  A synchronization primitive (e.g. a 

semaphore) is used to block the second task until the first task has completed its operation and 

left the chain intact.  Thus, access to the chain is serialized. The consequence of serialized access 



is that systems that rely heavily on dynamic memory management will not scale well on multi-

CPU/multi-core systems when using a default, general purpose allocator. Multiple threads on 

multiple cores should be able to run in parallel, but serialization defeats this. IMDSs can fall into 

that trap, but “built from scratch” IMDSs can employ a specialized type of memory allocator to 

solve this problem. 

Conclusion 

When an in-memory database solution is required, carefully consider available options, 

and cast a skeptical eye on vendors’ claims.  The degree to which a solution eliminates caching, 

and redundant data in indexes, for example, will directly affect performance and efficient use of 

memory.  Avoid artificial restrictions that are by-products of an incomplete implementation of 

in-memory tables. Demand that any solution provide all standard database product features 

(replication, BLOB and TEXT columns, etc.), and refuse to tolerate artificial limits on in-

memory database or transaction size. Test different solutions. Results will differ widely between 

purported “in memory database systems,” because some of these products really are IMDSs, 

while others are not. The performance gap between them arises directly from issues discussed in 

this paper. 

 

 




