
TThe C programming language is incredibly
popular and widely used on many projects
ranging from the simple to complex,

safety-critical systems. But the way C has
evolved means that it is perfectly possible to
write C that is legal, that compiles but is
unpredictable in execution. This is clearly not
acceptable for safety-critical systems, so in the
1990s automotive companies Rover and Ford
separately developed their own sub-sets of C.
Under the auspices of the MISRA Steering
Group, these were merged to become
Guidelines for the Use of the C Language in
Vehicle Based Software or MISRA C:1998.
As these guidelines began to be used in real-life

projects, it was clear that there were deficiencies
and also that the guidelines were applicable way
beyond the automotive market. The next version,
MISRA C:2004, was called Guidelines for the Use
of the C Language in Critical Systems. (Its friends
sometimes call it C2.). These guidelines are now
very widely used, either in themselves or as the
basis of company specific guidelines.

When C2 was published it was specifically aimed at
C90/95 (ISO-C 9899:1990 +A1, TC’s 1, 2 & 3).
(Although C99 had been published it was not widely
implemented.) The working group on C (of which I am a
member) continued to meet. It produced what we called
a Technical Corrigendum and then began to look at the
changes needed in the light of user experience and the
greater availability of C99.
As the user experience began to feed back, we got

some surprises, some good and some not so good. The
good news was the wide take-up of C2, and the growth
of MISRA C checking tools, normally as part of static
code analysis. The bad news was that ‘100% MISRA C
compliance’ had become one of the boxes to tick in any
audit process, demonstrating a complete lack of
understanding of what MISRA C is about.
The give-away is in the word Guidelines in the title.

MISRA does not set out a set of prescriptive rules:
instead it provides a set of building blocks to create a
coding standard for a specific set of circumstances. To
allow this to happen, there has always been the option
to deviate a rule: that is, effectively to ignore it,
providing the project documentation records why that

Automotive

June 2013 | June 2013 | Electronic Specifier DesignElectronic Specifier Design Reproduced with PermissionReproduced with Permission

MI
SRA C

This is not a lifeb
elt

Chris Hills, CTO of Phaedrus Systems and a member of the MISRA C working
group discusses the new MISRA C:2012 guidelines but also looks at why, on

their own, they are not that useful.

Im
ag
e
co
ur
te
sy
 o
f d
ig
ita
la
rt
at
 Fr
ee
Di
gi
ta
lP
ho
to
s.n
et

http://www.electronicspecifier.com

rule has been deviated. With C2 it was legally possible
to have a coding standard that was technically MISRA
compliant but in which every rule had been deviated.
(The deviation document would be large and make very
interesting reading!)
Compilers were adding MISRA checking — which

implied that MISRA compliance had not been checked
by static code analysis before compilation. And there
was other feed back that suggested that while we
thought we knew what we were saying when we drew
up a rule for C2, users found it ambiguous or, perhaps
what was worse, did not understand why it existed.

A new approach
So for C3 (MISRA C:2012) we took a new approach.
Firstly the headline rules were re-written, to be short and
succinct. In some cases this meant splitting an old rule
into two or more new rules. Then the rule has an
optional amplification, a rationale and, again optionally,
exceptions. With the amplification, or clarification, we
can explain a short rule, rather than having a 5 line
headline rule. The rationale gives the whys and
wherefores of the rule followed, optionally by any
exceptions. The exceptions again help to keep the
headline rule short. Hopefully, this will ensure the whole
rule, including the rationale is read. (In the past people
seem to have read only the headline.)
With MISRA C:2012 it is no longer possible to deviate

every rule. In addition to Required and Advisory rules
there are now Mandatory rules, which must be adhered
to claim any sort of MISRA C compliance. We started
with about 30 Mandatory rules but after many
discussions ended up with about 10 of them, as there
are very few rules that will universally apply to all C
developments. (This is an important point as it means
that for projects using MISRA C, the vast majority, if not
all of them, will have to deviate some rules.)
Recognising this, C3 now has an appendix on

deviations, how to record them and how to link them to
a compliance matrix. The compliance matrix lists all the
rules and whether they are checked by the compiler,
static analyser or manual review. (Yes, you still need a
manual review, even after static analysis, and yes, you
do need static analysis.)
One reason for going beyond just using static analysis

is that there is a new factor for the rules: Decidability. A
Decidable rule can be checked as a yes or no — has this
rule been broken or obeyed for file or system scope. A
rule may not be decidable at all. About 80% of the
rules are Decidable, but this leaves 20% where a

checker cannot say if the rule was broken. In addition
there are also 16 directives. These are ‘rules’ where
compliance cannot be determined from just the source
code. For example: “All source files shall compile
without any compilation errors.” This, you might think,
should be a given, but some compilers will produce an
executable despite having generated ‘error’ messages
as opposed to ‘warnings’. Another directive is: “All code
shall be traceable to documented requirements.”
Requirements? Did someone mention documentation
and requirements?
And this neatly brings us to the real issue: MISRA C’s

value only appears when it is part of a disciplined and
structured development process. Just saying ‘use MISRA
C’ is not just pointless but can be counter-productive,
damaging the morale of the development team and
producing second rate code.

Specify first
People working to develop products that meet
safety standards such as ISO 26262 or IEC 61508
have become used to a development process
designed to make it possible to track a system
requirement from its initial statement in a
requirements specification to its implementation in
the final system. But this level of knowledge should
not be limited to safety-critical projects. What we
are looking at here is using tools in a process to
change developing software from a hand-craft on a
par with knitting socks or making sandals out of old
car tyres, to an engineering process that can,
through monitoring and recording, be repeated and
improved: a process that delivers a quality end-
product, repeatedly and within time and budget.
In much of software development ‘bugs’ are

regarded as a nuisance — something you swat
through testing. But for years now it has been well-
documented that the later in development you
identify the bugs, the more resource you need to
swat them and the higher the cost, particularly in
delaying the delivery of the final product.
So how do you go about implementing a

development process? And what do you need to
do it? The process described here is the V method.
This is often regarded as old fashioned by
exponents of techniques such as agile
programming, but it is at the heart of quality
standards like ISO 26262.
You start by defining your requirements; what are

you trying to achieve here. These requirements

Automotive

June 2013 | June 2013 | Electronic Specifier DesignElectronic Specifier Design Reproduced with PermissionReproduced with Permission

http://www.electronicspecifier.com

definitions are often massive word processed
documents that are stored away once this stage is
passed. There are tools that not only help you
capture these requirements, but make them
available throughout the product life-cycle, allowing
you to refine them in the light of later progress. The
requirements can also include meeting a specific
standard, such as 61508, and again there are tools
that can help you identify which parts of the
standard are relevant for your project.
Requirements need to be turned into a

specification of a product that will satisfy those
requirements. There are tools to do this and that
also help you to determine that the code you
are generating meets the specification. At last
you can start coding and, at last, MISRA C
becomes relevant.
As coding progresses the code should be run

through static code analysis tools. These range in
sophistication from fairly simple checkers to
sophisticated analysers that identify a whole
range of problems throughout the code base –
and also check for MISRA C compliance. After
static code analysis there is still a role for manual
code review. If you like, once the static code
analysis has determined whether or not the code
is performing correctly, code review can
concentrate on whether the code is actually doing
what the specification wants it to do.
All compilers are not created equal, and the

choice of compiler may also be influenced by

whether the project is working
to a safety standard or not. If it
is, there are compilers
validated to those standards.
For unit testing the code,

there are tools that have
specifically been developed for
the safety standards and which
are designed to automate the
testing against your
specification.
Producing the system

requires middle-ware and there
is a whole range of application
dependent middle-ware
products available. Things like
file systems, software stacks for
communications, data-bases
and RTOSs can all be found

that have been developed to high standards and
some are even MISRA C compliant.
Finally there is system test and customer testing,

all again capable of automation. In the classic V
model, actions after coding feed back in to the
earlier stages, both to produce revisions to meet
problems found and to ensure that the system and
the requirements/specification and the actual
project remain in step.
All the way through this section I have kept

emphasising tools. Traditionally software has been
the poor relation of hardware in investing in tools,
but with software becoming not just important but
the main embodiment of the end product,
management is beginning to understand that a
relatively small investment in tools will give
enormous returns in terms of speed and quality of
product development.
And back to MISRA C. The code that is the heart

of embedded products is not just important, it is
often the product itself, with the hardware acting
only as a delivery platform. MISRA C helps
produce safe and reliable code. But it is only
when a disciplined development process ensures
that the code meets specification and requirements
that it truly begins to play its full role.

Electronic Specifier DesignElectronic Specifier Design | June 2013| June 2013Reproduced with PermissionReproduced with Permission

! More from Phaedrus Systems

Im
ag
e
co
ur
te
sy
 o
f d
dp
av
um

ba
 a
t F
re
eD
ig
ita
lP
ho
to
s.n
et

http://www.electronicspecifier.com/company/Phaedrus-Systems.asp
http://www.electronicspecifier.com

